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Multiobjective Optimization in Health Care Management. A metaheuristic
and simulation approach.

Cristina Azcárate, Fermı́n Mallor and Aurora Gafaro

Department of Statistics and Operations Research, Public University of Navarre, Spain

Abstract

This paper describes a methodology which combines elementsof statistics, probability, mathematical programming,
simulation, multiobjective optimization and metaheuristics, to analyze management problems in a health care context.
We apply this approach to a staffing problem in a primary care center, taking into account both cost and service quality
criteria. We illustrate our approach with a case study.
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1. Introduction and literature review

In this paper we show how simulation can be used
in combination with other statistical and optimization
tools to analyze health care management problems, and
obtain the “best configuration” when several objectives
are simultaneously considered (cost and patient satis-
faction measures). We apply this analysis framework to
a real case study of a primary health care center (HCC)
in the city of Pamplona, Colombia.

The paper is organized as follows. The rest of this
section is devoted to a review of past literature on simu-
lation studies and optimization studies in health care and
an introduction to multi-criteria decision problems. Sec-
tion 2 presents the formulation of the problem and the
methodology proposed to solve it. Section 3 describes
the case study. Finally, some suggestions for future re-
search and concluding remarks are given in section 4.

Operations Research methods are an important and
effective tool for handling a wide range of health care
problems. The article by Bailey [7], published in 1952,
which used queuing theory to analyze waiting times
and appointments in hospital outpatient departments, is
considered the first OR work to be applied to health
care management.

In the last few decades, many journals and books with
a combined health-mathematics profile have released
studies relating to the management and operation of
health care systems and medical decision making. These
problems have been tackled mainly with mathematical
programming techniques, heuristics, decision models,
queuing theory and discrete event simulation (DES).

1.1. Simulation in heath care

Much of the research on medical decision making
involves the modeling of disease processes in order to
evaluate strategies for prevention, treatment and other
interventions. Although Markov processes and decision
models are often used to evaluate these medical proce-
dures, DES has become very popular [21]. Simulation,
for example, is used to evaluate the cost-effectiveness
of treatments for osteoporosis in women [50], for pre-
vention of mother-to-child HIV transmission [44], for
coronary heart disease prevention strategies [6], in the
prevention and treatment of diabetic retinopathy [33],
in a helicobacter pylori screening program [20], for the
early detection and treatment of colorectal cancer [31],
etc.

Nevertheless, DES has been more widely used to
tackle problems relating to health care system manage-
ment and operation, which are typically characterized
by an uncertain working environment and limited hu-
man and material resources. Since the first paper that
used simulation modeling for hospital facilities [25], a
wide range of problems, such as patient flow modeling,
bed capacity, management of waiting lists, health care
center design, emergency facilities, etc., have been ad-
dressed by means of this OR technique. A review of
the application of DES to issues arising in health care
clinics can be found in [37].

One of the most widely studied problems is hospi-
tal resource needs and capacity planning. For example,
the variability in hospital bed occupancy makes bed
availability planning difficult. The need to cover peak
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demands and avoid congestion, while also achieving a
good average occupancy level is a hard problem for
health administrators. Simulation is often used to plan
effective and efficient bed capacity. In [18] a DES is
used to balance bed utilization in an obstetrics hospi-
tal with more than 200 beds. [34] presents a simulation
model for hospital bed capacity planning and manage-
ment, with various types of patient flows. Emergency
bed requirements are analyzed in [3]. Peak demands
are considered in [53]. A DES is proposed in [45] for
planning intensive care units, one of the most expensive
hospital departments.

Simulation is also used to determine the appropriate
level of material and human resources needed in a health
center, as well as to analyze how existing resources
could be used in a more efficient way. This kind of
problem arises both in the design of a new center and
in the reorganization of an existing one. Examples can
be found in a family practice health center [51], in a
physician clinic within a physician network [52], in a
laparoscopic surgery [49], or in relation to the number
of nurses needed in an intensive care unit [29].

Several works analyze health care systems operation.
There is a rather extensive literature on appointment sys-
tems and waiting list management. Waiting lists are the
main cause of patient dissatisfaction in developed coun-
tries and a problem to which health managers are draw-
ing attention. A simulation model is proposed in [24]
as a decision-support instrument for the scheduling of
patients waiting for elective surgery in a public hospital
system. The model can be used as a tactical and op-
erational decision-support system to schedule the flow
of elective surgery patients to appropriate hospitals, be-
sides exploring different ways of using existing or addi-
tional resources. A simulation model is built in [54] to
compare different hospital admission systems, in [13] to
analyze the effect of patient classification in scheduling
appointments for ambulatory care services, and in [38]
to analyze an intensive care admission and discharge
process. Related works can be found in [1], [5] and [46].

Special attention is paid to organ transplant waiting
lists. Unfortunately, many patients in Europe have died
while waiting for a donor organ. In [42], a simulation
model is applied to evaluate the cost-efficiency of differ-
ent allocation policies in a liver transplant center. Nine
alternative policies, depending on clinical severity, time
spent on waiting list, age, blood group and estimated
chance of survival are considered. This topic is also
studied in [48].

Simulation has already been used in other health care

applications: Red Cross bloodmobiles [12], a hospital
lift system [17], the geographical planning of health
centers [32], in modeling the public health response to
bioterrorism [35], or in robotic courier deliveries [47].
Problems associated with the incorporation of human
behavior into simulation models are considered in [11].

1.2. Multicriteria Optimization in heath care

The available literature on optimization techniques
for planning health care resources is extensive. One of
the problems most frequently addressed is the alloca-
tion of resources in hospitals with special emphasis on
staff planning. Examples of this type of problem, and a
list of further references, can be found in [8] and [16].
While these studies, and many others, consider only one
objective function, in this paper we are interested in
problems simultaneously involving several objectives.

Multicriteria Decision Making deals with problems
entailing multiple and conflicting objectives. The con-
flicting nature of the objective functions makes a global
optimal solution unfeasible. Thus, a compromise solu-
tion must be found.

In this context, optimality must be replaced by
efficiency. A solution is said to beefficient (or non-
dominated or Pareto optimal) if any objective function
value can be improved without jeopardizing at least
one of the remaining objective values. The set of all
efficient solutions is called the efficient set or the
Pareto frontier. The solution process usually requires
the participation of a human decision-maker, who must
inform about her preferences in relation to the conflict-
ing objectives. In the search for the final solution, only
the efficient solutions must be considered.

Since the seventies, several methods have been pro-
posed to handle this problem. They can be classified
on the basis of different criteria. If the number of fea-
sible solutions is small, the problem is called a multi-
attribute problem and can be solved with different kinds
of methods: multi-attribute utility, outranking methods
(like ELECTRE or PROMETHEE) and the Analytic Hi-
erarchy Process. When the number of feasible solutions
is large or infinite, the problem is said to be a multi-
objective optimization problem, which is an extension
of the mathematical programming problem. Multiob-
jective programming methods can be divided into three
classes according to the role played by the decision-
maker in the solution process: generating methods (or
a posteriorimethods),a priori methods and interactive
methods.Generating methodsare methods for generat-
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ing the set of efficient solutions. The two most common
approaches to characterizing efficient solutions are the
weighting method and theǫ-constraint method. Among
all the existing literature, we suggest the reading of [14],
for the classical methods, and the more recent [26], for
a review of the state of the art.

The models proposed for the analysis of health care
management problems are frequently used to evalu-
ate different performance measures, which can be sub-
divided into economic performance and service qual-
ity measures. Economic performance measures mainly
consider the total cost or profit of the health center con-
figuration and the resource usage level. The research
has defined several service quality indicators, such as
average waiting-in-line times and throughput times, the
percentage of patients turned away, patient throughput,
over-utilized time, treatment and prevention effective-
ness, etc. A detailed discussion of health care perfor-
mance measurement can be found in [40].

The conflicting nature of these performance measures
makes it difficult to determine the optimal configuration
of the system. For instance, there is a trade-off between
minimizing the cost of the system configuration and
maximizing patient satisfaction.

Many studies address these multiobjective situations
by using the model to evaluate only a small number
of scenarios, showing the trade-off between the perfor-
mance measures considered, for an example, see [54].
Others authors (as in [51] ) narrow their focus to a sin-
gle budgetary objective. They estimate patient and med-
ical staff satisfaction in monetary terms, by considering
economic sanctions for failing to meet waiting time and
other service quality objectives. Studies dealing with the
evaluation of prevention, treatment and other strategies
often handle this problem by defining ratios to com-
pare the cost-effectiveness of different strategies [43].
We have also found applications of multi-criteria deci-
sion making techniques incorporating the use of mathe-
matical programming or other optimization techniques
(metaheuristic) (for example, see [30], [9] or [41] ), but
have found only one in a simulation context [10].

1.3. Optimization with simulation in heath care

Nevertheless, only a few works use an integrated sim-
ulation and optimization approach. In [22] a DES model
is combined with nonlinear programming and neuronal
networks to determine the optimal configuration of a
transfusion center. The method determines the numbers
of reception staff, nurses or doctors for the hemoglobin

test, doctors for the medical examination and venipunc-
ture beds (the decision variables). The authors consider
two objectives: minimization of the configuration cost
and minimization of the average total time spent in
the system. Their proposed model integrates simulation,
neural networks and nonlinear integer optimization as
follows. The simulation model is used to obtain the sam-
ple for the estimation of a functional relation (y = f (x))
between the average total time spent in the system,y,
and the decision variables,x. This function, estimated
by means of the neural network, is used in the formula-
tion of two optimization problems, one for each objec-
tive considered, to obtain the optimal system configura-
tion. The simulation model is also used to validate the
solutions proposed by the optimization problems. Our
research differs from [22] in the way optimization and
simulation is combined, as will be explained in section
2. Recently, Brailsford et al. published a study, [10],
for the optimal choice of screening policy for diabetic
retinopathy, by embedding discrete event simulation in
an ant colony optimization model. They consider two
objectives (cost and effectiveness) although only one
function, the cost-effectiveness ratio, is used to compare
solutions. In future research they plan to improve their
model by considering multi-criteria objective functions
for the ant colony algorithm.

In our case we consider several objective functions,
using theǫ-constraint method to estimate the Pareto
frontier in combination with a scatter search method to
find solutions and a simulation model to evaluate them
and check their feasibility.

2. Problem formulation and methodology

2.1. Problem statement

We consider a general primary care center, in which
patients arrive without a scheduled appointment. Pa-
tients first have to visit an administrative office to ob-
tain an appointment with medical staff (pediatricians,
doctors, nurses) if there is remaining medical capacity,
they can then visit the medical rooms.

This problem can be modeled as a network queue,
with several service facilities. Patients can take different
paths through this network. Each service is performed
by one of a range of service providers (administrative
staff, medical staff, beds. . . ).

From a queuing theory point of view, the study tackles
the problem of optimizing the system configuration, that
is, determining the number of service providers in each
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facility and their time-schedule, in order to optimize
certain criteria.

This decision generally identifies two types of crite-
ria, economic and service quality-related.

The problem has random components: the patient ar-
rival process, medical condition, time spent in the doc-
tor’s room, and so on. This random environment makes
it difficult to define clear objective functions and/or con-
straints (for example, service quality criteria as the av-
erage total time spent in the system, or waiting in line,
the percentage of patients turned away, resource usage,
etc.).

2.2. Simulation model

The uncertainties and complexities of this healthcare
system led us to choose simulation as the basic analysis
instrument. In constructing the simulation model, the
following steps were considered.

1.- Structural modeling

By structural modeling we mean identifying all the
important elements in the system, describing them
in mathematical terms, and establishing their logi-
cal relationships. The nature of the problem makes it
straightforward to model the health system as a queuing
network with several service facilities. Thus, for each
service facility, the usual elements in a queuing model
must be considered: the number of service providers,
the waiting room, queue discipline, service times, etc.

2.- Data modeling

The input data needed to run the model are the arrival
pattern, branching probabilities and service durations.

2.1- Arrival pattern

The patient arrivals are usually seen as a discrete
event process that can be described by using appropriate
stochastic point processes. A reasonable choice is the
Poisson Point Process, due to its characterization which
is as follows:

A stochastic patient arrival process{N(t), t ≥ 0} is
a Poisson Processif:
(1) Patients arrive one at a time.
(2) The number of arrivals in the time interval

(t, t + s], N (t + s) - N (t), is independent of the
number and times of arrivals taking place from

0 until time t. That is, it is independent of the
variable set{N (u), 0 ≤ u ≤ t}.

(3) The distribution ofN (t + s) - N (t) is independent
of t for all t, s ≥ 0.

Properties 1 and 2 can be interpreted as follows. Pa-
tients arrive at the hospital on an individual basis, know-
ing nothing about the patients that have arrived before
them (or whatever they know has no influence in their
decision about when to go to the health care center) and
without anyone coordinating the arrivals of patients ac-
cording to a pre-established plan. Condition 3 sets the
homogeneityof the process through time. This condition
is more difficult to assume in this kind of arrival process,
because arrivals usually peak several times throughout
the day. If this third condition is removed from the def-
inition, we get anon-homogeneousPoisson Process.

We introduce a new functionΛ(t) defined as the ex-
pected number of arrivals until timet, that is,Λ(t) =
E[N(t)] (t ≥ 0). WhenΛ(t) can be derived, its deriva-
tive is called the arrival ratio functionλ(t) = Λ′(t)
which can be interpreted as the instantaneous expected
number of arrivals per unit time at timet. In a non-
homogeneous Poisson Process this instantaneous ex-
pected mean varies through time.

Either of the two functions,λ(t) or Λ(t), completely
determines de Poisson Process. We propose a procedure
for the estimation of these functions from the patient
arrival data in appendix A. The method involves some
straightforward spreadsheet calculations, an ordinary
statistical regression analysis and the derivative of the
fitted function. Its main advantage is that it provides
a smooth function for the arrival rate function instead
of a step function as the usual modeling method does.
For more on the importance of correct patient arrival
modeling and the use of non-homogeneous Poisson
processes, see Alexopoulos et al. [2].

2.2 - Branching probability estimates

After visiting one service facility, a patient can take
different paths. Branching probabilities can be estimated
from data and/or from verbal reports provided by the
staff.
2.3 - Service time estimates

Service times in each of the service facilities can also
be estimated from data and/or from verbal consultation
with staff.

Doctors’ service time usually depends on the patient’s
sex, age and medical condition. Each combination of
age, sex and illness defines a different group of patients.
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Fig. 1. Combination of Simulation with optimization tech-
niques

Service times for each group of patients and for each
type of medical service must be estimated, again from
real data and/or from expert opinion.

2.3. Combining optimization and simulation.

The simulation model only allows us to test the per-
formance of a given configuration for the HCC through
the statistical analysis of a set of output performance
measures. Therefore, to determine the best configuration
for the system, an optimization procedure must be in-
troduced and linked with the simulation model (see [4])
in the following way.

The optimization procedure determines a system con-
figuration or solution (that is, a value for the decision
variables of the problem). This system configuration
is simulated. The output of this simulation is used in
the optimization procedure to evaluate the random ob-
jectives and/or constraints. The optimization procedure,
with this information and its search method, decides the
next solution to be evaluated (Figure 1). This process
goes on until stopping conditions of the optimization
method are met.

Metaheuristic approaches are frequently used as an
optimization engine, when combining simulation with
optimization techniques. For a discussion of meta-
heuristics, see [28] . At this point, many different
metaheuristics can be chosen. As an example, in what
follows we present the approach used to analyze our
case study: the scatter search, as proposed by Laguna
and Martı́ [39] . The main steps are outlined in Figure 2.

A scatter search was implemented to solve the fol-
lowing type of optimization problem:

Min F (x)

subject to







Ax ≤ b
gl ≤ G(x) ≤ gu (2)
l ≤ x ≤ u (3)

(1)

Wherex is the decision variables vector andF (x) may
be any mapping from a set of valuesx to a real value.

The feasibility of a solutionx depends on a set of lin-
ear constraints (set 1 in formula (1) ) and bounds for
the variables (set 3 in formula (1) ). Since both types of
conditions are knowna priori, the feasibility of a solu-
tion, according to these conditions, can be tested before
sending it to the simulator for evaluation. The feasibil-
ity of a solution also depends on a set of requirements
represented by functionsG(x) which are not necessar-
ily linear (set 2 in formula (1) ) and can only be checked
after the simulation process, because they are expressed
in terms of a set of performance measures estimated by
means of the statistical analysis of simulation output.
The coefficient matrixA, the vectorb, and the bounds
l, u, gl andgu must be known.

The scatter search method implemented in this re-
search begins by generating a starting set of diverse
points. Once this initial reference set has been created,
new solutions are generated by linear combinations of
reference solutions. Before sending a solution to the
simulator to obtain its performance measures, a feasi-
bility test is carried out by checking constraints and
bounds. If a solutionx is not feasible then the following
linear programming is solved to find the closest feasible
solutionx* to x.

Min d− + d+

subject to















Ax∗ ≤ b
x − x∗ − d− + d+ = 0
l ≤ x∗ ≤ u
d−, d+ ≥ 0

(2)

In (2) ,d− is the negative deviation andd+ is the positive
deviation from the feasible solutionx∗ to the infeasible
reference solutionx. The mapped solution is sent to
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the simulator to obtain a set of performance measures.
One of these measures is used as the objective function
valueF(x), which provides the way to distinguish good
solutions from bad ones. Each requirementG(x)is also
evaluated and compared with its bounds to check the
feasibility of the solution. Infeasible solutions are not
discarded but handled with a composite functionP (x)
that penalizes violations of the requirement. The penalty
is proportional to the degree of violation and does not
remain static throughout the search.

If the reference set does not change because the new
solutions lack sufficient quality to be included in it then
a diversification step is required, in which the reference
set is rebuilt to create a balance between solution quality
and diversity. More details about this and other steps in
search procedure can be found in [39].

2.4. Multiobjective optimization

In our problem we consider both economic and ser-
vice quality criteria. Most applications in economic or
industrial contexts estimate quality criteria in economic
terms. Nevertheless, in the health care context, mone-
tary measures of quality aspects can be difficult to ob-
tain and may prove inaccurate. As a result, both kinds
of criteria must be considered, and because of their con-
flictive nature, the problem must be solved by means of
a multi-criteria decision model. Thus, the purpose of the
analysis is to determine the Pareto Frontier associated
with the multiobjective problem. Our proposal is to use
multiobjective mathematical techniques to generate the
set of efficient solutions. From all the possible generat-
ing methods, we have chosen theǫ-constraint method.

The ǫ-constraint methodoptimizes one of thek ob-
jective functions and incorporates the other objectives
by means of bound constraints:

Min Fi(x)

subject to

{

Fj(x) ≤ εj∀j 6= i, j = 1, ..., k
x ∈ S

(3)

It can be proved (see [14] ) thatx∗ is an efficient solution
if, and only if, x∗ solves the above problem for every
i = 1,. . . ,k. Besides, ifx∗ is a unique solution of the
ǫ-constraint problem,x∗ is an efficient solution.

Each of the problems generated by theǫ-constraint
methodis solved by the scatter search optimization pro-
cedure which calls on the simulator to evaluate the ex-
plored solutions. Each iteration provides an efficient so-
lution. The methodology is outlined in figure 3.

Fig. 3. Methodology: combiningǫ-constraints with scatter
search and simulation.

The procedure begins by defining an optimization
problem according to theǫ-constraint methodthat is, by
choosing one of the objective functions,Fi(x), to be op-
timized and two aspiration levels,ǫ1 andǫ2, for the two
remaining objective functions. This optimization prob-
lem is sent to the scatter search procedure, which builds
an initial set of solutions called thereference set. Each
of these solutions,x(j), together with a set of parame-
tersp (arrival rates, costs, service times, etc.), defines
a configuration,C(x(j), p), of the HCC. This configu-
ration is simulated to obtain a set of performance mea-
surements from the statistical analysis of the simulation
output,O(C(x(j),p)). In particular we estimate the func-
tions Fi(x(j),p) andG(x(j),p) which allow us to check
the feasibility and quality of the solutionx(j). If the
stopping conditions of the scatter search are not met,
then a new solution is taken from thereference setto be
evaluated and sent to the simulator. If stopping condi-
tions are met, then the best solution in the reference set,
x*, is considered an optimal solution of theǫ-constraint
problem and, also, therefore an efficient solution to be
included in the Pareto FrontierPF. While each of the
three objective functions are not being optimized for
an appropriate set of aspiration levels for the other two
objective functions, a new optimization problem is de-
fined (changing valuesǫ1, ǫ2 and/or functionFi to be
optimized) and the preceding iteration repeated.

However, if the decision-maker has a clear idea of
how to compare them, then ana priori method would be
more appropriate to handle the multiobjective problem.
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The most representativea priori method is Goal Pro-
gramming (GP), proposed by Charnes and Cooper [15]
. The decision-maker must specify his/her aspiration
levels,ai, for each objective functionFi, i=1,. . . ,k. By
introducing positive and negative deviation variables
(d+,d−), a goal is built as the relation between the ob-
jective function and the aspiration level proposed by the
decision-maker. In GP models, the deviations are min-
imized. A general structure for a GP problem is:

Min g(d+, d−)

subjectto







Fi(x) + d−i − d+
i = ai i = 1,..., k

d−i , d+
i ≥ 0 i = 1,..., k

x ∈ S
(4)

There are different GP approaches. In the weighted
approach the decision-maker must also specify pos-
itive weights and the sum of the weighted devia-
tion variables is minimized. That is,g(d

+
, d−) =

∑k
i=1

(

w−
i d−i + w+

i d+
i

)

3. A case study

3.1. Problem description

We applied the described methodology to the primary
health center of the Hospital San Juan de Dios in the city
of Pamplona (Colombia), which provides medical ser-
vices to an economically and culturally disadvantaged
population with a high level of poverty and illiteracy.
These conditions are the main reason for the special op-
eration characteristics of the center that might appear
strange to anyone living in a more developed region.

Patients arrive at the center without a scheduled ap-
pointment, from Monday to Friday. From 5 a.m. on-
wards they start to arrive at the invoicing office, where
two people attend patients from 7 a.m. to 9 a.m. Patients
are not allowed to arrange appointments by telephone.
People without the correct pay-documents are rejected
and have to return another day. The receptionist assigns
each patient to one of the two doctors until the daily
medical capacity is fully allocated, at which point, the
patients waiting in the queue are turned back and have
to try another day, reinitiating the process at the invoic-
ing office. In exceptional cases, certain special patients
may be given an appointment even if capacity is fully
allocated. Some patients have their own preferences re-
garding choice of doctor and this is taken into account
when assigning appointments.

Fig. 4. Network model for the primary health care center.

Next, accepted patients must visit the record retrieval
office (open from 7 a.m. to 11 a.m.), where two admin-
istrative workers have to retrieve their case history, or, if
necessary, open a new patient case history, which adds
to service time. Any patients whose documents are not
in order are turned away from the record retrieval of-
fice and thus exit the system. After this second stage,
patients must wait their turn in a waiting room. Doctors
see patients from 7 a.m. to 1 p.m.

The purpose of our study was to improve the per-
formance of this care center, taking both economic and
patient satisfaction measures simultaneously into con-
sideration. To reach this goal, we developed a model
to be analyzed with a combination of simulation and
multi-criteria optimization techniques.

3.2. Simulation model

3.2.1. Structural modeling
From the description of the problem presented in the

previous section, it is straightforward that this health
system can be modeled as a network queue with 4 ser-
vice facilities (figure 4). For each service facility we
have considered the usual elements in a queuing model:
number of service providers, the waiting room, queue
discipline, service times, etc.
Input modeling

To check for time-dependence in the arrival pattern,
daily patient arrival time data for the period January to
September 2004 were analyzed.

Although no monthly pattern emerged, time-
dependence in day of the week and hour of the day were
detected. A non-homogeneousPoisson Process was
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considered for each day of the week. The Friday arrival
rate estimate is presented in appendix 1 as an example.
Branching probabilities estimates

The first branching in patient flow occurs in the in-
voicing office, where some patients continue in the care
system, while others exit because they are unable to
present the required documents or daily medical capac-
ity is already fully allocated. Daily capacity can only
be exceeded to attend priority patients. The branching
probabilities of a patient without the required docu-
ments and the percentage of special patients were de-
rived from the data. These estimations have been vali-
dated by invoicing office staff.

The small percentage of patients that exit the system
at the record retrieval point was also estimated from
data.
Service time estimates

Admission times

The percentages of patients with and without the re-
quired documents and the percentage of special patients
were estimated from data supplied by the invoicing
office staff. The different service times for these three
types of patients in the invoicing office were also esti-
mated from the same source.

Record retrieval times

Service times for the three types of patients in record
retrieval (patients with a case history, patients without
a case history and patients without the required docu-
ments) were also estimated from staff-supplied data.

Doctors’ service times

As already stated, this service time depends on the
patient’s sex, age and medical condition. The hospital
considers 6 age levels and 21 categories of illness. Dif-
ferent patient-groups are defined by combining age, sex
and medical condition data. The fact that not all com-
binations are possible means that there are only 69 dif-
ferent groups of patients.

Two different data sources were used to estimate ser-
vice times. On the one hand, day-to-day administrative
records are kept of the sex, age and medical condition
of each patient seen by each doctor. Thus, we know how
many patients from each group are seen each day by the
doctors. On the other hand, the service times for each
of the patients that entered a doctor’s consultation room

were also recorded for a period of nine months. Unfortu-
nately, we only know the sequence of times spent by the
successive patients inside the doctor’s room, but noth-
ing of their personal characteristics such as sex, age or
medical condition. So, there was no link between these
two data sources, and we were therefore unable to dis-
tribute service times across the different patient groups.

A third source of service time data was the doctors
themselves, who reported on the minimum, maximum
and most usual time needed to see a patient in each
of the sex/age/medical condition groups. Furthermore,
they agreed to use triangular distributions for the service
time in each patient group.

Consequently, we were able to obtain data for global
time spent in doctors’ rooms and the triangular distri-
butions estimated from the doctors’ reports. Doctors’
estimates were validated by means of the following sta-
tistical analysis.

Let TT be the total doctor service time needed to
attend all the patients for whom we have recorded data
(9,732 patients over the nine months).

We know, from the administrative records, how many
patients there are in each group. Then, we haveTT =
∑69

j=1

∑ni

i=1 Tij , whereTij is the time taken to serve
patienti of groupj, andni is the number of patients
in groupi. Observe thatTij = Tj , ∀i have a triangular
distribution with known parameters (those estimated by
the doctors).

By using Liendeberg’s central limit theorem, the ran-
dom variableTT can be approximated to a normal dis-
tribution, with the following mean and variance:

E[TT ] =
∑69

j=1 njE[Tj ] = 1, 858.88

V [TT ] =
∑69

j=1 njV [Tj] = (27.77)2







(5)

According to this normal distribution there is a prob-
ability of less than 0.001 of taking a value less than or
equal to 1,769.93, the sum of the 9,732 service times
recorded in hours. We can therefore conclude that, in
general, doctors overestimate service time.

Because of the discrepancy between these two in-
formation sources, we considered modifying the doc-
tors’ probability distributions. To do this, we propose a
maximum likelihood classification method, which uses
the aforementioned triangular distribution estimates and
linear programming, as shown in appendix 2.

As a result of this classification method, we assign
a patient group to each service time recorded. Thus,
we have samples of service times for each group. With
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Fig. 5. Network model for the alternative scenarios.

these samples, new service time distribution estimates
can be obtained. Note that these new distributions take
into account the data supplied the doctors and more
closely match the observed times.

3.3. The optimization problem

In line with the request of the hospital managers, we
considered four different operation scenarios for this
health care center and studied the staffing problem for
each one of them.

The four scenarios are as follows: scenario A (see
figure 4) represents the current configuration of the sys-
tem, composed of 2, 2, and 2 service providers (invoic-
ing office, record retrieval, doctor rooms, respectively).
In scenario B, C, D different operation configurations
are proposed (figure 5).

More specifically, scenario B considers three kinds of
patient-health needs and the possibility that one or more
nurses may attend adult patients with minor ailments,
one or more doctors may attend adult patients with se-
vere medical conditions and one or more pediatricians
may attend children (up to fourteen years of age).

Scenario C considers the possibility of separate
rooms for doctors (D) and nurses (N ). Depending on
their medical condition, patients may need to visit a
doctor only, a nurse only or both, each case resulting
in a different flow:D − N , N − D, N − D − N or
D − N − D.

Scenario D differs from the previous scenario in that
all patients must visit a nurse; this determines patient
flow in each case, thus, the allowed flows areN , N−D,
N − D − N .

For each of the above scenarios, we consider the three
following objective functions:
(1) F1(x): Minimize cost.
(2) F2(x): Minimize the percentage of patients turned

away.
(3) F3(x): Maximize a quality factor of doctor service.
The first objective function is an economic criterion

that takes into account all economic costs associated
with the HCC, the bulk of which is staff salaries; the sec-
ond objective is to properly dimension the HCC by mini-
mizing the percentage of patients turned away due to the
limited daily capacity of doctors/nurses/pediatricians;
and the third captures the quality of doctor service to
patients by means of a quality measure that depends on
the time spent by doctors/nurses/pediatricians on each
group of patients. For this purpose we define the variable
“quality factor”, δ, as a factor to multiply the service
times for doctors. So, the simulated doctor service times
are the corresponding estimated distributions multiplied
by the quality factor. Then,δ=1 leaves the service times
unchanged;δ=1.20 increases the service times by 20%,
andδ=0.9 decreases the service times to 90%.

The following decision variablesare considered in
the optimization problem
• δ : the quality factor of doctor service which is a

continuous bounded variable.
• XIi, XRi, i=1,. . . ,5: the number of service providers

in the invoicing office and in record retrieval, respec-
tively, during the working dayi. They are 10 integer
variables.

• XDi, XNi, XPi, i=1,. . . ,5: the number of doctors,
nurses and pediatricians, respectively, during the
working dayi. They total 10 or 15 integer variables,
depending on the scenario.

• TDi, TNi, TPi, i=1,. . . ,5: the number of overtime
hours for each medical staff type, that is, doctors,
nurses and pediatricians, respectively, during the
working day i. They total 10 or 15 variables, de-
pending on the scenario.
Each combination of values for these variables con-

stitutes a solution for the decision problem. Given a so-
lution, we need to determine the daily capacity of med-
ical staff, that is, how many patients per day can be
appointed to medical staff.

We calculate this number of patients as the maximum
value, verifying that the sum of their time spent in the
doctor’s room is less than the total available doctor ser-
vice time (WT) with a probability equal to or greater
than 0.95.

Let Ci denote the number of appointed patients dur-
ing working dayi andTj the random variable that de-
scribes the service time spent on patientj. Then

Ci = max
{

s/P
(

∑s

j=1
Tj ≤ WTi

)

≥ 0.95
}

(6)

Denoting byE[T] andV[T] the mean and variance of
a service timeT for a generic patient, straightforward
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calculations (detailed in appendix C) give us:

Ci =
⌊[

2δ E[T ] WTi + (1.65)2δ2 V [T ]−
√

(1.65)4δ4 V [T ]2 + 4(1.65)2δ3E[T ] V [T ] WTi

]

/(2δ2E[T ]2) ⌋ (7)

3.4. Embedding the simulation in the optimization
problem

From the analyst’s point of view, the decision prob-
lem is solved by determining the Pareto Frontier for
the multiobjective optimization problem associated with
each scenario.

The Pareto optimal frontier for each scenario is esti-
mated following the methodology presented in section
2. For ease of notation, suppose that the three objec-
tive functions(j=1,2,3) represent quantities to be maxi-
mized. First, we formulate the set of optimization prob-
lems required by theǫ-constraint method.

Maximize Fi(x)

subject to

{

Fj(x) ≥ εj,k j 6= i; k = 1, . . . , r
x ∈ S

(8)
S denotes the prior feasibility set for the vectorx, that
is, in our case, the set of bounds on the variables. For
example, we could consider overtime to be bounded
at two hours per day. It would also be possible to in-
clude linear restrictions on the variables, by requiring,
for example, that the number of nurses in scenario C
and D be greater than or equal to the number of doctors:
XDi − XNi ≤ 0.

The bounds for the non-optimized objectives are also
considered as constraints in the case of functionsF1

andF3 and as a requirement in the case of functionF2.
Simulation is needed for the evaluation of the number
of patients turned away.

Varying the boundsǫj,k within a range of values de-
cided in conjunction with the managers, we obtain a set
of problems, each of which will provide an efficient so-
lution. By exchanging the objective function to be op-
timized we obtain three such sets of problems.

Each of these optimization problems is solved using
the scatter search metaheuristic.

To evaluate a solution the simulator is needed. Note
that other performance measures (expected patient time

in system, expected time in queue, expected number of
patients in queue, resource usage, etc.) are also esti-
mated through simulation. Although these performance
measures are not considered as objective functions in
our optimization problem, they are evaluated and used
as additional, complementary information to present to
decision-makers.

Several recently launched commercial discrete-event
simulation software packages incorporate an optimiza-
tion module allowing some kind of optimization to be
performed, usually, with the help of metaheuristic tech-
niques. In our research, we have used ARENA simu-
lation software to build our simulation model, which
contains the OptQuest optimization module in which
the scatter search optimization method is implemented.
Comprehensive examples of the use of OptQuest can
be found in [4] and a detailed explanation of the op-
timization procedure implemented in this research can
be read in [39].

3.5. Simulation experimental design and output anal-
ysis

We consider an endpoint simulation model, starting
from an empty and idle system state. The simulation
run length for each replication is one week of system
operation. We use the sequential sampling method to
determine the number of replications needed to obtain
the accuracy considered in the estimations. That is, our
simulation model incorporates a program to check the
accuracy of some quality performance estimates after
each simulation replication. In more specific terms, at
the end of each replication, it evaluates the confidence-
interval half width of the performance measures consid-
ered. If these half widths are sufficiently accurate, the
simulation stops; otherwise, one more replication is run.

We use a variance reduction technique to reduce out-
put randomness. That is, we use the common random
numbers technique, to synchronize the use of random
numbers across the model alternatives.

As an illustrative example, figure 6 shows the esti-
mated optimal Pareto frontier for scenario C. This fig-
ure plots the optimization results for the three objective
functions: cost (Z axis), percentage of patients turned
away, (Y axis), and service quality factor (X axis). The
numerical values of the estimated Pareto optimal fron-
tier plotted in figure 6 are shown in the table below.

Note that this Pareto frontier is an estimation of the
true Pareto frontier because one of the three objective
functions is evaluated by simulation and because an
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Table 1

Solution 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cost 626 742 756 800 873 1206 656 735 687 660 693 623 665 626

% Turned away 12.27 4.94 2.69 1.68 1.52 0.00 8.95 4.94 7.18 8.36 3.38 9.34 7.18 12.3

Quality 1.50 1.50 1.50 1.50 1.50 1.5 1.43 1.34 1.32 1.30 1.30 1.28 1.27 1.25

Solution 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Cost 1136 642 636 1118 985 947 664 716 616 616 913 695 648 757

% Turned away 0.00 7.18 8.99 0.00 0.00 0.01 2.09 1.01 7.61 7.18 0.00 1.01 1.01 0.00

Quality 1.24 1.24 1.17 1.15 1.12 1.12 1.07 1.05 1.02 0.96 0.86 0.78 0.75 0.75

Fig. 6. Example of efficient solutions obtained for the scenario
C.

approximating optimization method is used; that is, with
no guarantee of obtaining the optimal solution.

From a mathematical point of view, a multiobjective
problem is solved by finding the Pareto frontier. From
experimental results, we have observed that the usual
aspects of the quality of the estimated Pareto frontier,
such as proximity, diversity and pertinence are fulfilled:
• Proximity: the estimated Pareto frontier is close to

the real one.
• Diversity: a good distribution of solutions in the three

objective functions considered.
• Pertinence: the solutions set should contain configu-

rations within the decision-maker’s area of interest.
Observe that diversity and pertinence are guaranteed

by the use of theǫ-constraint method; proximity is due
to the quality of the metaheuristic used in the resolutions
of theǫ-constraint problems.

Once this efficient set has been generated, it is pre-
sented to decision-maker, who must choose the pre-
ferred solution. This could be complicated in the event
of a Pareto Frontier with many points. The decision-
maker should first identify the area of interest to com-

pare solutions by making a kind of trade-off between
pairs of objectives. An example of the type of reasoning
that might be used by the decision-maker is as follows:
Suppose that we want to keep the budget controlled and
then relatively close to the minimum (616) in the sense
that increments of less than 20% (around 720) are de-
sirable. We also want to keep down the number of pa-
tients turned away, say below 2%. These two conditions
would define the pertinence area, which is given by so-
lutions 22, 26 and 27. These solutions provide the same
percentage of patients turned away and have costs of
716, 695 and 648, respectively, and quality measures
of 1.05, 0.78 and 0.75, respectively. Which is the best
choice? The decision-maker will probably discard so-
lution 26 first, because the quality is similar to that of
27 but the cost is higher. Then, 22 or 27? Solution 22
seems more appropriate because a 10% decrease in the
budget would result in a reduction of more than 25% in
quality, which may be too drastic.

So, the process of choosing one solution involves
comparing the different objectives. However, if the
decision-maker has a clear idea of how to compare
them, then ana priori method would be more appro-
priate to handle the multiobjective problem .

We intend to present the results of this study to the
managers of the HCC because in the initial stages of
the research they provided us with the necessary data
to build the model and they also showed great interest
in the results. Nevertheless, to be of use to them, our
study is still lacking in one final step, that is, to inte-
grate the analysis in user-friendly software to provide
the decision-maker with a useful means to define the
scenarios and obtain usable reports.

4. Conclusions and future research

In this paper we have shown how simulation, com-
bined with statistics and optimization techniques, is a
valuable decision-making tool in the health care field.
We have illustrated the proposed methodology by mod-
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eling and analyzing the primary health center located
in the HospitalSan Juan de Diosof Pamplona (Colom-
bia). Although the system is not very big in terms of
infrastructure and human resources, etc., it has all the
characteristics of a complex decision problem, such as
randomness in the number and arrival times of the pa-
tients; random service times; simultaneous considera-
tion of many performance measures, some of which are
difficult to calculate; and many possible configurations
for the system, making it impossible to evaluate all of
them in order to select the “best one”. We were able to
deal with all these system characteristics.

Furthermore, the simulation software offers anima-
tion and graphical outputs which reassure managers
(decision-makers) regarding the credibility of the model
and the reliability of the analysis. They are able to vi-
sualize the effect of different management or operation
policies, which is very important when decisions have
to be taken by persons not specialized in the use of these
quantitative research techniques.

Our main contribution is methodological in nature,
having built a method that draws on statistics, proba-
bility, mathematical programming, simulation, multiob-
jective optimization and metaheuristics. Furthermore, as
far as we know, such methodology has never been used
in the analysis of real cases in health care settings.

Another, theoretical, contribution is the procedure to
obtain the maximum likelihood classification of doctor
service times in groups of patients. This classification
is used to validate expert opinions and obtain the dis-
tribution of the service time using a form of Bayesian
approximation in which triangular distributions play the
role of a priori distributions. Furthermore, from the as-
signment it is possible to estimate the order in which
patients entered the office. It can be used to test the
patient arrival pattern for group-independence. In our
model we assumed the independence hypothesis.

The advantage of using a generating method to han-
dle the multiobjective problem is that it yields the full
efficient set (or at least a good approximation). The dis-
advantages are the considerable computational effort re-
quired and, from a practical point of view, the difficulty
for the decision-maker to select one solution from a very
large set of efficient solutions. Cluster and filter tech-
niques are used to help the decision-maker by reducing
the set of solutions presented. When the decision-maker
is well acquainted with the structure of the problem and
is able to compare the different objective functions then
he or she must specify his/her opinion or preferences
before the solution process begins. These preferences

could be incorporated into the mathematical model by
using ana priori multiobjective method.

In our research we have used a multiobjective mathe-
matical technique, theǫ-constraint method, to estimate
the Pareto frontier, but this simulation and optimiza-
tion model could also incorporate other metaheuristic
techniques. In this sense several methods have been
proposed in recent years to solve real multiobjective
problems ( [27] , [36] ). Among them, one of the eas-
iest to implement and combine with simulation are
evolutionary algorithms. See the books by Deb [23]
and Coello et al. [19] for a deeper explanation.

Acknowledgement: The authors are grateful to two
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Appendices

A Input modeling

As an example, the estimation of thenon-homogeneous
Poisson Process defined by arrival rate for Fridays is
presented in this appendix.

Let us consider the patient arrival times from the 30
recorded Fridays. Time is measured in minutes starting
at 5 a. m.

We estimate the arrival rate function in the following
4 steps.

Step 1.-Observed accumulated number of arrivals
over the 30 Fridays
Figure A.1 shows the functionΛi(t) =

∑ni

j=1 1{tij≤t},
that is, the accumulated number of arrivals against the
time for the 30 Fridays.

Step 2.- Aggregated accumulated number of arrivals
We estimate the expected accumulated arrival
functions by dividing the aggregated function by the
aggregated number of days (cf. Figure A.2)

Step 3.- Polynomial regression of the aggregated ac-
cumulatednumber of arrivals
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Fig. A.2. Average accumulated number of patient arrivals.
Data for Fridays.

Fig. A.3. Regression model for the average accumulated num-
ber of patient arrivals. Data for Fridays.

We have considered a polynomial regression model.
Figure A.3 shows the graphical result.
As result of the regression analysis we have
Λ̂(t)= -20.6667 10−8 t4+ 60.0043 10−6 t3- 14.0187 10−4

t2+ 1.7186 10−2t+ 1.6728
Step 4.- Estimated arrival ratio function

We derive the polynomial function fitted in step 3 to
obtain the estimation of the arrival ratio functionλ(t)
(cf. figure A.4).
λ̃(t) = -8.2667 10−7 t3+ 18.0013 10−5 t2- 2.8037
10−3 t+ 1.7186 10−2

B Maximum likelihood classification

This method is based on the resolution of an assign-
ment/transportation problem, which is a particular type

Fig. A.4. Estimated arrival rate for Fridays.

of integer linear programming problem. Given two sets,
each with an equal number of items, the problem is to
find an optimal full matching between the items of the
two sets. Each pair formed by one item each set has as-
sociated a cost. The total cost of a full matching is the
sum of the costs of each of the pairs involved. Thus, the
optimal matching is the one with the minimum cost as-
sociated. In our case one set of items is formed by the
set of service times recorded during a day and the other
set is made up of the groups to which the patients seen
by the doctors that day belong.

Consider the following notation: P1, . . . , Pk are
the k patients seen by the doctors on a certain day.
Their service times, denoted byt1,. . . , tk, respec-
tively, have to be classified intor groups,g1,. . . , gr,
with frequenciesn1,. . . , nr, respectively.G repre-
sents the set of theser groups. We also denote by
lj = {(i, g(i)) | i = 1,. . . , k; g(i) ∈ G} one of thes
different possible classifications,g(i) being the group
to whichPi has been assigned.

s =
k!

n1! × · · · × nr!
(B.1)

For each patient groupgi the density functionfi(t) of
the doctor service time is known (triangular distribution
given by expert opinion). Then, the likelihood function
L(lj) (or the “probability” of the sample of recorded
times) is

L(lj) =
k

∏

i=1

fg(i)(ti) (B.2)
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The log-likelihood function is

log L(lj) =

k
∑

i=1

log fg(i)(ti) (B.3)

The assignment of patients to groupsl∗j maximizing the
above function is the maximum likelihood classifica-
tion. The solution to this maximization problem is ob-
tained by solving an assignment/transportation problem
when the cost of assigning a patientPi to groupg is
C(i, g) = log fg(ti). In this case we have a maximization
problem.

Observe that, when a recorded timet is beyond the
positive variation range of a density function, then its
associated assignment cost is -∞. This means that the
patient with this time can not be assigned to the group
described by this density. But, if there are many pairs
associated with an infinite cost, then the problem could
be infeasible. That is, there is no possible assignment
in which all the pairs have a finite cost. Obviously,
infeasibility will never arise if all the recorded times
t have been drawn from the densities provided by the
experts. Thus, an infeasibility situation is a symptom
of poor estimation in the density functions. But, if our
primary objective is to provide the “best” classifica-
tion according to the expert opinions, then we should
slightly modify the cost definition to avoid the infeasi-
bility results.

A modified maximum likelihood assignment

We are going to modify the triangular densitiesf (x)
to prevent them from taking value zero. The idea, as
shown in Figure B.1, is to substitute the triangular den-
sity in intervals (0,L+) and(U−,∞) with another func-
tion taking a value greater than zero at all points of both
intervals.

We organize the procedure in the following steps.
• Step 1. Calculation of the cut pointsL+ andU−.

These two points are determined by the probabilityα
we want to leave in the tails. This probability is fixeda
priori and should be assigned a low value to avoid over-
modifying expert opinion. For the right side we have:

α = (U−U−)
2(U − U−)

(U − m)(U − L)

1

2
=

(U − U−)2

(U − m)(U − L)
(B.4)

Deriving U− as function ofα, we obtain

U− = U −
√

α(U − m)(U − L) (B.5)

Fig. B.1. Modified Triangular Distribution.

For the left side we have:

α = (L+−L)
2(L+ − L)

(m − L)(U − L)

1

2
=

(L+ − L)2

(m − L)(U − L)
(B.6)

Deriving L+ as function ofα, we obtain

L+ = L +
√

α(m − L)(U − L) (B.7)

Acceptable values forα could be those in the interval
(0.01, 0.05). In any case the valueα must be in the
interval (0, (U - m) / (U - L)), for the right tail case,
and in (0, (m - L) / (U - L)), in the left tail case.
• Step 2. Obtaining the new density function g(x) in

(U−, ∞).
We consider the following exponential family of

functions depending on two parameters:g(x) = kλ
e−λx. Parametersk and λ are determined when we
impose the following two conditions.
◮ The area under the curve in the interval (U−,∞) is

α:

α =

∫ ∞

U−

g(x) dx =

∫ ∞

U−

kλe−λx dx = ke−λU−

(B.8)
◮ Continuity: functionsg(x) and f(x) take the same

value inx = U−:

f(U−) =
2(U − U−)

(U − m)(U − L)
= kλe−λU−

= g(U−)

(B.9)
Solving this two-equation system we obtain
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λ =
f(U−)

α
andk = αeU−f(U−)/α (B.10)

Summarizing, we find

g(x) = f(U−) e−f(U−)(x−U−)/α (B.11)

• Step 3. Obtaining the new density functiong(x) in
(0, L+).
We consider the following family of functions de-

pending on two parameters:g(x) = ae−b. Parameters
a andb are determined when we impose the following
two conditions:
◮ The area under the curve in the interval(0, L+) is α :

α =

∫ L+

0

g(x)dx =

∫ L+

0

a x−bdx =
a

1 − b
(L+)1−b

(B.12)
◮ Continuity: functionsg(x) and f (x) take the same

value inx = L+:

f(L+) =
2(L+ − L)

(m − L)(U − L)
= a L−b = g(L+)

(B.13)
Solving this two-equation system we obtain

b = 1 −
L+

α
f(L+)

and

a = f(L+) × (L+)

(

1−

[

L+f(L+)
α

])

Thus, the density function is

g(x) = f(L+)
( x

L+

)−(1−(L+f(L+)/α))

(B.14)
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C Capacity Determination.

The capacityCi for day i is defined as

Ci = max
{

s/P
(

∑s

j=1
Tj ≤ WTi

)

≥ p
}

(C.1)

Then thep value represents the probability that the doc-
tors’ working time will be enough to serveCi patients.
Typically thep value will be 0.95.

All random variablesTj describe the service time for
a generic patientj and are considered to be independent

and identically distributed:Tj
d
≡T

Thus, it is verified that
∑s

i=1 Ti → N(sδE[T ], sδ2V [T ]).
By standardizing and operating, we obtain:

P
[

∑s

j=1
Tj ≤ WTi

]

≥ p

if and only if

p

[

z ≤
WTi − sδE[T ]

δ
√

sV ar[T ]

]

≥ p

with Z the standard normal variable. Then,Ci is the
values verifying

WTi − sδE[T ]

δ
√

sV ar[T ]
≥ zp (C.2)

From this expression, by squaring both sides of the
above equation and solving the second order equation,
it follows that:

Ci =
⌊[(

2δ E[T ] WTi + z2
pδ2 V [T ]−

√

z4
pδ4 V [T ]2 + 4z2

pδ3E[T ] V [T ] WTi ) ]

/2δ2E[T ]2 ⌋

Let us note that, becausezp = −z1−p, the two solutions
correspond to

P [Z ≤
TWi − sδE[T ]

δ
√

sV ar[T ]
] ≥ p

and

P

[

z ≤
wTi − sδE[T ]

δ
√

sV ar[T ]

]

≥ 1 − p

Therefore, only the negative root should be considered.


