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The versatility of generalizability theory as a tool
for exploring and controlling measurement error

Sandra Johnson
Assessment Europe, Scotland

Key worps: Generalizability theory, national assessment, attainment surveys,
numeracy assessment, test reliability, domain sampling, matrix sampling

Measurement error arises from many sources in educational assessment. It is
important to estimate the importance of this error, and, if appropriate, to seek
ways to reduce it. Generalizability theory represents a powerful tool in this sense,
allowing identifiable error contributions to be separately quantified, and mea-
surement error to be estimated and even predicted in response to possible changes
in the measurement procedure. The paper offers examples of generalizability
analysis of numeracy attainment data deriving from the Scottish Survey of
Achievement, with the aim of illustrating the versatility of the methodology for
error estimation and prediction in this type of sample-based programme.

Mors cLis: Théorie de la généralisabilité, évaluation nationale, enquétes pour le
suivi des acquis, ¢évaluation des notions de calcul, fiabilit¢ d’un test,
échantillonnage par domaine, échantillonnage matriciel

L’erreur de mesure découle de nombreuses sources dans [’évaluation en éduca-
tion. 1l est important d’estimer ['ampleur de cette erreur et, si c’est le cas, de
chercher les moyens de la réduire. La théorie de la généralisabilité représente
dans ce sens un outil puissant qui permet d’identifier les sources de ’erreur et de
les quantifier séparément, d’estimer |’erreur de mesure et méme de prédire la
réponse a d’éventuels changements dans la procédure de mesure. Cet article offre
des exemples d’application de l’analyse de la généralisabilité sur des données pour
le suivi des acquis des notions de calcul, données provenant de [’enquéte écossaise
sur la réussite, dans le but d’illustrer la polyvalence de la méthodologie d’esti-
mation et de prévision de l’erreur dans ce programme d’évaluation basé sur un
échantillonage.

Author’s note — Assessment Europe is Technical Adviser to the Scottish Government’s
Assessment for Learning Programme, and in particular to the Scottish Survey of
Achievement. All correspondence should be addressed to [Sandra.Johnson@Assessment-
Europe.com].
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Pacavras-cuave: Teoria da generalizabilidade, avaliagdo nacional, estudos das
aprendizagens adquiridas, avaliag@o das nogdes de calculo, fiabilidade de um
teste, amostragem por dominio, amostragem matricial

Na avaliagio em educagdo, o erro de medida decorre de numerosas fontes. E
importante calcular a amplitude deste erro e, se for o caso, procurar meios para
a reduzir. A teoria da generalizabilidade representa, neste sentido, um instrumento
poderoso que permite identificar as fontes do erro e quantificd-las separadamente,
calcular o erro de medida e mesmo prever a resposta a eventuais mudangas nos
procedimentos de medida. Este artigo fornece exemplos de aplicagdo da andlise
da generalizabilidade sobre os dados das aprendizagens adquiridas de nogoes de
calculo, dados provenientes do Estudo Escocés sobre o Sucesso, com o objectivo
de ilustrar a versatilidade da metodologia de calculo e previsdo do erro neste
programa de avalia¢do baseado numa amostra.

Generalizability theory

Generalizability theory (G-theory) uses information about quantified
contributions to measurement error to estimate, and even to predict,
measurement precision (Brennan, 1992, 2001 ; Cardinet & Tourneur, 1985;
Cronbach, Gleser, Nanda & Rajaratnam, 1972 ; Shavelson & Webb, 1991;
Thompson, 2003). Given this, G-theory clearly has a useful role to play in any
sample-based assessment exercise, including experimental design applications
and sample-based attainment surveys.

A generalizability study, or G-study, first requires the identification of
observable factors that can be assumed or suspected to affect the dependent
variable, which might be a reading test score, an ICT skills score, an attitude
scale score, or whatever. Relevant factors might include curriculum covered,
teaching effectiveness, adequacy of revision, test length, marking accuracy,
gender, actual ability or attitude (the real focus of the measurement), mood on
the day of assessment, etc. An appropriate G-study is then designed with
which to investigate the contributions to score variation of those factors which
can in practice be identified and whose effects can be observed. For example,
test length and gender can clearly be observed. Curriculum coverage can also
be observed to some extent. But teaching effectiveness would be difficult to
address, and mood on the day of assessment even more so. Relative influences
on the dependent variable are quantified in the form of estimated variance
components, using classical analysis of variance (ANOVA) or some other
appropriate methodology. The component information is in turn used to calculate
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measurement errors and “generalizability coefficients” (G-coefficients) —
ratios of linear combinations of adjusted components that indicate the technical
reliability of target measurements. Finally, a “what if?” facility, or decision-
study (D-study), permits predictions of reliability and measurement error
when those features of the current design that can be changed are changed in
a future application — such as increasing the numbers of items in a test — so
that we might optimize measurement by maximally increasing precision.

Pupil attainment surveys are an interesting context for the application of
G-theory. The principal purpose of such surveys is typically to estimate the
ability, achievement or attainment of some population of pupils in some area
of the curriculum — perhaps pupils’ numeracy attainment at the end of primary
schooling. In this context, sampled pupils merely represent their population —
they are not of special interest as individuals. Since they are a sample, pupils,
and their schools and classes, contribute to error variance, as do the assess-
ment tasks administered to them (that is if one wishes to generalize beyond the
specific set used in the survey). Clearly, in such applications it is essential to
offer some indication of the size of estimation error for reported population
attainment estimates. It is also important to explore ways of reducing estimation
error in future surveys, within financial, logistic and other constraints. Attain-
ment surveys, by virtue of their scale and design, are also able to furnish addi-
tional information of value in other assessment contexts, including item banking.
Here, too, reliability indices and measurement error estimates are useful.

In this paper, numeracy data from the Scottish Survey of Achievement are
used to illustrate the versatility of G-theory through examples of application.
The G-theory software package EduG' was used to analyse the data.

The Scottish Survey of Achievement

The Scottish Survey of Achievement (SSA) is a sample-based survey pro-
gramme that constitutes one element in a coherent framework of assessment
in Scotland (Hayward, 2007). Launched in 2005, the SSA continues Scotland’s
long history of sample-based attainment surveys, in that it has evolved from
the long-running Assessment of Achievement Programme (AAP), that began
life in the mid-1980s (Condie, Robertson & Napuk, 2003). The difference
between the two programmes is that the SSA was initially designed to offer
attainment reporting at the level of local authorities as well as nationally,
whereas the AAP offered only national attainment reporting.
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There are always multiple objectives for any large-scale survey of the type
considered here. The principal survey objective in both 2005 and 2006 was to
assess pupils’ attainment levels in numeracy and reading at national and local
authority level for four key stages in schooling: P3 (7-8 year olds), P5 (9-10
year olds), P7 (11-12 year olds, end of primary schooling) and S2 (13-14 year
olds). Pupil attainment was reported with reference to the progressive level
framework in the 5-14 National Curriculum Guidelines (e.g., SOED, 1991 ;
SOEID, 1999 for mathematics), as percentages of pupils attaining particular
levels (A to F). While there are measurement challenges associated with this
form of reporting, the benefits are that all stakeholders — policy makers,
teachers, pupils and parents — are able fully to understand the reported fin-
dings, given their shared understanding of the 5-14 level framework. At each
stage, pupils were assessed at three of the six progression levels. These are the
levels most appropriate for the stage concerned: Levels A, B and C for P3;
Levels B, C and D for P5; Levels C, D and E for P7; and Levels D, E and F
for S2.

Domain sampling was employed to select numeracy items from the 5-14
National Assessment Bank? for survey use, supplemented through new item
development where necessary. Almost 600 items in total were administered in
each of the two surveys, that is 80-90 items per level; just under half the items
used in 2005 were incidentally common to the two surveys. In 2005, the items
were distributed among 40 different numeracy test booklets, 10 per stage; in
2006 there were 48 booklets in total, 12 per stage. An important constraint had
to be met when creating the booklets. This was that no pupil should be faced
with a test booklet entirely composed of items from one level only, since the
level concerned might be far below their capabilities or dauntingly above
them. Every test booklet therefore contained items at three consecutive levels,
with items presented in a randomized order throughout the booklet. And every
booklet came in two versions, the second simply reversing the item presen-
tation order of the first (this was to minimise the possible impact of fatigue
effects on particular items, since item-level statistics were to be an important
secondary outcome). Multiple matrix sampling was used to allocate items to
test booklets, and test booklets to pupils. Each pupil took two different test
booklets, and in consequence attempted three different single-level tests,
where a single-level test comprised those items at the same level across the
booklet pair.
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After inevitable pupil losses from the intended samples, around 28,000
pupils in almost 1500 mainstream schools across Scotland were tested in each
of the surveys, this is approximately 12% of the pupil population at each
stage. Around half the pupils took numeracy tests and half reading tests. Pupils
were classified into attainment bands at each level on the basis of their test
performances, specifically in terms of the proportions of items they
successfully answered at that level in their two booklets®. Pupils correctly
answering 80% or more of the test items at a level were deemed to have
shown “very good” attainment at that level. Pupils answering 65 % or more of
the items at a level correctly but fewer than 80% were classified as having
“well-established” skills at the level (i.e., “secutity”). Pupils correctly answering
50% or more of the items at a level correctly but not as many as 65 % were
deemed to have made a “good start” at the level. Weighted proportions of pupils
in each band at each level were computed, and margins of error estimated
using the jackknife technique. The results are presented in detail in the survey
reports (Scottish Government, 2006, 2007).

Measurement reliability

The SSA, like other national and international survey programmes, is not
concerned primarily with assessing the abilities or skills of individual pupils.
But individual pupils were inevitably assessed in the process of producing
population attainment estimates, and their achievement results can therefore
be used to explore the reliability of the test scores that underpin those
population estimates. They can also be used to explore the reliability of item
summary scores — facility values in this case — that might be useful in other
types of application.

Such information is especially useful in the Scottish context for two
reasons. The 5-14 National Assessment Bank furnishes assessment materials
for use in the SSA, and reciprocally benefits post-survey from new item input
from the SSA. It also serves as a resource for teachers, who can download
National Assessments, single-level tests, for use in their classrooms to confirm
their own judgements of their pupils’ attainment levels. There is no mecha-
nism in place at present for teachers to feedback the item-level results that
could be used to explore the “fitness for purpose” of the National Assess-
ments. This means that the SSA has a role to play here, in investigating the
reliability of the downloadable tests for the assessment of individual pupils.
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Secondly, even though item statistics are not used when creating test
booklets for the SSA or for the National Assessments programme, this situation
might change in the future. In addition, other item-banking applications might
be launched at some point for which such statistics might be useful or even
necessary. The SSA provides item performance statistics on the basis of large
nationally representative pupil samples. But how reliable are the resulting
statistics ? The answer is very reliable, as the first example G-theory appli-
cation presented in this paper confirms.

The simplest possible ANOVA model, that involves pupils on the one
hand and items on the other, is the crossed design P x I, where P represents
pupils and I represents items, and all pupils attempt all items. Figure 1 is a
typical variance partition diagram for this design, following Cronbach et al.
(1972). There are three potential sources of score variation: between-pupil
variance (the pupil effect in ANOVA terminology), the between-item variance,
(the item effect), and the pupil by item interaction. This interaction is confounded
with residual variance, given that we typically have one single observation per
interaction cell, since any one pupil attempts any particular test item once
only: again following Cronbach et al.(1972), the residual variance element in
this confounded variance component is represented by the letter e.

Pupils

Pupil by item interaction,
combined with residual variance

Figure 1. Variance partition diagram for the crossed design Px I

This is an appropriate point at which to introduce three important G-
theory terms: relative measurement, absolute measurement, and criterion-
referenced measurement. In a context of relative measurement the aim is to
locate objects, in this case pupils or items, relative to one another on some
scale of measurement, with maximum reliability; a typical application would
be selection, or normative grading. Absolute measurement is concerned
rather with the precision with which the objects are individually measured,
irrespective of where any other objects might be on the measurement scale;
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domain-referenced mean scores are relevant here. In criterion-referenced
measurement, the aim is to make mastery decisions with maximum confi-
dence when applying criterion cut-off scores to test results, such as the 65%
“well-established” score in the SSA.

In G-theory terminology, the factors of ANOVA become “facets”, a term
change apparently introduced to avoid confusion with the factors of factor
analysis (Cronbach et al., 1972, p. 2 footnote). “Generalization facets” contri-
bute to measurement error. Which facets are generalization facets will depend
on which facet is the object of measurement (i.e., the “differentiation facet”),
as well as on the sampling status of the facet itself (fixed, finite, random). Jean
Cardinet and his colleagues were instrumental in promoting the property of
ANOVA “symmetry” to expand the application of G-theory beyond the pupil
assessment that was its original focus (see Cardinet & Tourneur, 1985 ; Cardinet,
Tourneur & Allal, 1976, 1981, 1982). Symmetry simply indicates that any of
the factors/facets in a design can in principle be identified as the object of
measurement. Even in this simplest crossed design there are two possible
choices for a differentiation facet: pupils and items.

In either case, the only contribution to error variance in a context of relative
measurement will be the pupil by item interaction effect (combined, as it is,
with all residual variance). If the aim is to rank pupils the general level of
difficulty of the items used will simply result in the pupil rank-order moving
further up or further down the measurement scale ; between-item variance will
be irrelevant. Similarly, the general ability of the pupil group is irrelevant in
terms of item ranking. In the pupil ranking context the observed “universe
score” variance is the between-pupil variance, represented in ANOVA terms by
the estimated variance component for pupils. The total observed score variance
is the sum of the between-pupil variance and the pupil-by-item interaction
variance, after the latter is divided by the number of items involved (i.e., by
the number of pupil by item observations that have contributed to the pupil’s
total or average test score). The ratio of observed universe score to total obser-
ved score variance provides an indicator of relative measurement reliability :
rho-squared, G-theory’s relative and original generalizability coefficient. For
this simple application, the relative G-coefficient is exactly equivalent to
Cronbach’s alpha coefficient (Cronbach, 1951), the most familiar indicator of
score reliability, and the most frequently, if often inappropriately, reported
(Hogan, Benjamin & Brezinski, 2000). A corresponding G-coefficient can be
calculated for the item ranking application, this time by dividing the inter-
action variance by the number of pupils used to produce the estimated item
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facilities before combining with the between-item variance to produce the
total observed score variance. Conventionally, coefficient values of 0.8 or
higher (on a 0-1 scale) are considered to indicate adequate degrees of score
reliability, but obviously the higher the value the better.

If we are interested in locating a pupil or an item as precisely as possible
on a measurement scale, then mere rank ordering is not sufficient. Difficulty
variation in the items used will become relevant in the first case, between-item
variance becoming a second contributor to measurement error. Variation in
the ability of the pupils to whom the items are administered will become
relevant in the second case, and between-pupil variance will join the pupil-by-
item interaction effect as an error contributor. In other words, we need now
also to take into account the additional measurement error that will have arisen
from the item or the pupil sampling. The appropriate G-coefficient for
absolute measurement is the phi-coefficient. When cut-off scores are to be
applied the phi coefficient is replaced by the phi(lambda) coefficient, a criterion-
referenced variant (Brennan, 2001). The closer that lambda, the criterion cut-off
score, is to the test’s mean score the lower will be the phi(lambda) coefficient.

None of these coefficients is relevant in a situation where the aim is to
estimate the average attainment of a group, or population, of pupils with respect
to some given item domain (such as numeracy). The parameters of interest
here are the overall mean score (here the average pupil-item score), and its
associated standard error of measurement. There are no differentiation facets.

Numeracy test score reliability in the SSA

While the SSA is not concerned with ranking pupils or items, it might
nevertheless be of interest to note that for the majority of the over 100 single-
level numeracy tests administered in one or other of the surveys of 2005 and
2006, the coefficient of relative measurement was above 0.8, with several in
the 0.9s (Scottish Government, 2006, Technical Annex, Section C; 2007,
Annex II). For an illustrative example, let us take just one of the numeracy
tests used at P7 in 2005: an 18-item Level D test whose items were distributed
across booklets N21 and N22. Table 1 provides the ANOVA table for this test.
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Table 1
Analysis of variance for the design P x 1
(SSA4 2005, 18-item Level D numeracy test spanning booklets
21 and 22 at P7; 628 pupils)

Sum Mean Estimated
Source of variance of squares df square variance component
Pupils (P) 431.30467 627 0.68789 0.03003
Items (T) 272.93064 17 16.05474 0.02533
Pupils by Items plus
residual variance (PL,e) 1571.51380 10659 0.14744 0.14744
Total 2275.74912 11303

Using the data in Table 1, we calculate the G-coefficient for relative pupil
measurement, rho-squared, as:

0.03003/(0.03003 + 0.14744/18) = 0.79 (identical with coefficient alpha)
The corresponding G-coefficient for relative item measurement is:

0.02533/(0.02533 + 0.14744/628) = 0.99

The other Level D tests produced similar results, showing adequate score
reliability for relative pupil measurement and extremely high score reliability
for relative item measurement (this latter to be expected, given the very high
pupil numbers involved).

To estimate what the value of the relative G-coefficient for pupil ranking
might be, should a test longer than 18 items be used, we simply substitute 18
in the expression above with any feasible alternative number (a 200-item test
would, for example, not be practically feasible to administer). While there are
no National Assessments in numeracy, there are in mathematics, and at Level
D they comprise 27 items. With this number, the G-coefficient (assuming
primary mathematics and primary numeracy to be roughly interchangeable)
would increase to around 0.85, an acceptable level; 30 items would increase
the coefficient value to 0.86, 35 items to 0.88 and 40 items to 0.89.

What can we say about the reliability of absolute measurement, rather than
relative measurement? For the test under review, the absolute G-coefficient
for pupil measurement will be slightly lower than the relative coefficient,
given that the item variance will now also be a contributor to the error variance:

0.03003/(0.03003 + 0.02533/18 + 0.14744/18) = 0.76
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while the corresponding coefficient for item measurement is unchanged in
value:

0.02533/(0.02533 + 0.03003/628 + 0.14744/628) = 0.99

Again, we can use "what if?" analysis to estimate the values of the coef-
ficients should we change the number of items in the test or the number of
pupils taking the test.

As to the phi(lambda) coefficient, the mean test score for this Level D test
at this stage (P7) was 13, close to the criterion cut-off score of 12 (see Figure
2), and the value of the phi(lambda) coefficient is 0.78. The Level C test in the
same pair of test booklets had a mean score of 14.5, while the Level E test had
a mean score of 8.1. As might be predicted, therefore, both of these single-
level tests had higher phi(lambda) coefficients than the Level D test, at 0.85
and 0.88, respectively.

20

=a
h -‘-..
1

% pupils

= - - -
L]

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18

- Level C tests Level Dtests ------- Level Etests

Figure 2. Aggregated score distributions for SSA 2005 numeracy tests
at Levels C, D and E at P7 (the 65 % criterion cut-off score
for ‘well-established skills’ is equivalent to 12 items)
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Subgroup comparisons and population
estimates in the SSA

The simple model shown in Figure 1 can be extended, by introducing
other relevant factors. In particular, pupils are generally grouped in some way
in reality — they share some common characteristics, such as gender, socio-
economic background, class, school and age-group. Items, too, can sometimes
be grouped, for example in terms of topic, item format, parent test. Such
grouping is termed “nesting,” and is conventionally indicated by bracketing,
as in P (G), or by use of a colon, as in P:G. It is recognition of nesting features
in data that first led to the term “multilevel modeling”. Multilevel modeling as a
measurement approach is based on regression analysis, and was first developed
in a context of school effectiveness research to recognise the contributions of
nesting variables to the values of dependent variables, in particular to reco-
gnise the importance of class and school where pupil attainment is concerned
(Snijders & Bosker, 1999).

The problem with introducing nesting into designs within a context of large-
scale attainment surveys is that the attainment data are never balanced. For
example, even though the intended pupil sample for a particular booklet pair in
the SSA could have comprised equal numbers of boys and girls, the obtained
sample would usually not. In other cases, such as socioeconomic background,
the data are by nature very unbalanced. Typically, reflecting the situation in the
population at large, pupil samples contain relatively low proportions of
deprived pupils — defined as those living in an area that is among the 20 % most
deprived areas of the country, based on the Scottish Index of Multiple Depri-
vation (Scottish Executive, 2004). EduG, though, requires balanced data sets.

In the interests of illustrating a mixed model design involving nesting, two
nesting variables for pupils feature here: gender (G) and stage (S). Stage can
be included as a pupil nesting factor because every Level D test administered
at P7 was also administered at S2 (pupil records were eliminated at random to
produce a balanced data set comprising 250 pupils per gender per stage;
record elimination could have been avoided by processing the unbalanced data
set through an analysis of variance procedure provided by other software and
then submitting sums of squares to EduG). Figure 3 is the variance partition
diagram for the resulting design (P:GS) x 1. Note that both gender and stage
are fixed factors, since both genders feature in the data set, as do both stages
of interest — there is no intention to generalize results to any other stages. This
fixed status is indicated by dashed lines in the variance partition diagram.
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Figure 3. Variance partition diagram for the mixed model design
P(GS) x I, with both Gender and Stage fixed factors

Following the principle of symmetry, any one of the sources of variance
shown in Figure 3 could, in principle, be the differentiation facet of interest.
We might, for example, be interested, as before, in exploring the reliability of
item ranking or of pupil ranking. Or we might want to calculate the phi(lambda)
coefficient for this particular set of items attempted by this particular set of
pupils. Or we might, rather, be concerned to see how well the assessment has
managed to differentiate gender or stage. Let us focus on stage. Table 2 is the
ANOVA table for this design for the same Level D test as before, while Table
3 provides the G-study results.

Only three of the sources of variance in Figure 3 actually contribute to
error variance for relative measurement of stage attainment. These contri-
butors are SI, the stage by items interaction effect, P(GS), the pupils within
stage and gender effect, and (P:GS x I,¢), the pupil by item interaction effect
(confounded as usual with residual variance). As gender is a fixed factor, the
variance sources GS and SGI do not contribute to relative measurement error,
nor indeed to absolute measurement error. Dividing the relevant variance com-
ponent estimates by the appropriate numbers of observations (e.g., dividing
0.00058, the variance component for SI, by the number of stages, 2, and the
number of items, 18) and summing the resulting adjusted variance contri-
butions will provide the estimate of relative measurement error (see Table 3).

The relative G-coefficient is 0.91. The coefficient of absolute measurement,
however, is just 0.49, the dramatic reduction explained by the contribution to
absolute measurement error of the items effect (i.e., of between-item variation
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corresponding to the variance component, 0.01850, divided by the number of
items, 18). These coefficients are technically omega coefficients, a consequence
of the fact that the differentiation facet, stages, is a fixed factor (EduG calcu-
lates coefficients using whichever formula is appropriate, given the status of
the differentiation facet).

Table 2
Analysis of variance for the design P:GS x I
(SSA 2005, 18-item Level D numeracy test spanning booklets 21 and 22 at P7,
and booklets 31 and 32 at S2; 250 pupils per gender per stage,
gender and stage fixed factors)

Sum Mean Estimated
Source of variance of squares df square variance component
Stage (S) 20.60450 1 20.60450 0.00108
Gender (G) 1.07339 1 1.07339 0.00000
Items (I) 316.86850 17 18.63932 0.01850
Gender by Stage (GS) 0.28006 1 0.28006 -0.00003
Stage by Items (SI) 12.18850 17 0.71697 0.00058
Gender by Items (GI) 9.15561 17 0.53857 0.00040
Stage by Gender
by Items (SGI) 4.88094 17 0.28711 0.00015
Pupils within stage
and gender (P:GS) 669.47400 996 0.67216 0.02964
Pupils within Stage
and Gender, by Items
(PL:GS,e) 2347.96200 16932 0.13867 0.13867
Total 3382.48750 17999

While the two stages, P7 and S2, have been differentiated reliably with this
one test, absolute measurement of the stage means is inadequate. Clearly, since
it is between-item variance that is the main contributor to absolute measure-
ment error, the obvious strategy to improve the precision of the measurement
is to increase the number of items used, in order to reduce the contribution of
the items variance to measurement error.
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Table 3
G-study results for the design (P:GS) x 1

Differentiation Differentiation Sources of Relative Absolute
facet variance error variance error variance error variance
S 0.00108
I 0.00103
ST 0.00003 0.00003
P:GS 0.00006 0.00006
(P:GSx Le) 0.00002 0.00002
Total variance 0.00108 0.00011 0.00113
Standard deviation 0.03279 0.01034 0.03368

In the 2005 survey five different, and in principle equivalent, numeracy
tests were administered at each relevant level at each stage (Figure 4 illustrates
this), so that 90 items actually represented a level and not 18. With five tests
used at Level D, the coefficient for relative stage measurement increases from
0.91 to 0.97, while the coefficient for absolute stage measurement increases
from 0.49 to 0.74, a more acceptable value.
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Figure 4. Variance partition diagram for the design (P:GST) x (I:T)
(SSA 2005, five 18-item Level D numeracy tests used
at P7 and S2; 250 pupils per gender per stage per test,
with gender and stage fixed factors)
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Stage comparisons are interesting and useful, but the principal objective
of the survey was to produce population attainment estimates for each relevant
5-14 level at each stage assessed, with maximum precision. Imagine the
variance partition diagram in Figure 4 with stage removed: all the remaining
sources of variance, with the exception of the fixed facet gender and its inter-
actions with other facets, will contribute to the standard error of measurement
for the domain-referenced population attainment estimate at one stage — there
are no differentiation facets. EduG allows us to calculate the standard error of
measurement for each stage separately, using the data associated with the
design in Figure 4, by requesting an observation design reduction to eliminate
each stage in turn from the data set. The resulting mean scores are 70% for P7
and 76 % for S2, with standard errors of measurement of 1.9 percentage points
and 1.6 percentage points, respectively.

Can the measurement error be reduced ? Available optimizing options are
to change the numbers of items used, by changing the number or length of
tests used, and/or to change the numbers of pupils tested (see Johnson & Bell,
1985 ; Johnson, 2003, for previous examples). Table 4 shows the results of a
‘what if?” analysis for the P7 Level D data. Just three alternative facet sampling
strategies are investigated here for illustration (many others are possible):

1. increasing the numbers of items per test from 18 to 20 whilst reducing the
number of pupils per gender per test from 250 to 150;

2. increasing item numbers to 20 per test and the number of tests from 5 to
10, whilst reducing pupil numbers per gender per test to 100;

3. increasing item numbers to 30 per test, with five tests as before, and with
150 pupils per gender per test.

Table 4
SSA2005 D-study results for Level D numeracy assessment at P7

G-study PlanI PlanII  Plan III

Gender 2 2 2 2
Number of tests 5 5 10 5
Number of items within tests 18 20 20 30
Number of pupils within gender and test 250 150 100 150
Total number of observations 45,000 30,000 40,000 45,000
Absolute error variance 0.00034  0.00032 0.00017 0.00022
Standard error of measurement 0.019 0.018 0.013 0.015

95% confidence interval in percentage points =+ 3.7 +3.5 +2.5 +29
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As Table 4 shows, the number of pupils per test could have been almost
halved, from 500 to 300, with little loss in measurement precision. Increasing
the number of tests administered, however, would have increased precision
markedly, even with a further cut in pupil numbers per test, to 200 (this num-
ber, though, would be too low for other reasons — firstly, because it would not
be large enough to produce reliable item statistics, and, secondly, because it
would reduce the potential for gender comparisons at the item level).

An alternative strategy could be to reduce the item variance, along with
pupil by item and gender by item interaction (see Figure 5), by “culling” items
appropriately, as in Item Response Theory (IRT) applications. The effect of
such a strategy, however, might well be to narrow the definition of the item
domain, thus reducing assessment validity, and in turn assessment value, if the
nature of the domain narrowing cannot be made explicit. This would not be
acceptable in this particular programme, where broad and valid curriculum
coverage is considered vital to ensure assessment validity and usefulness.
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Figure 5. Item variance and gender by item interactions for Level D at P7
(SSA 2005, 90 Level D items in five numeracy tests;
250 pupils per gender per item)
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In conclusion

The SSA is a sample-based national monitoring programme, with
multiple aims, principal among them being to provide as precise estimates as
possible of the attainment levels of pupil populations in key curriculum areas.
But attainment estimates that are “as precise as possible” are not necessarily
the “most precise” estimates, because maximizing precision, within given
constraints, might only be achieved by reducing content validity and in turn
assessment value.

The programme is intended to monitor pupil attainment, and change in
this attainment over time, in terms of the curriculum being taught in the
schools. The domain sampling of level-validated items to create the tests used
in the programme contributes to broad curriculum coverage within each survey.
But broad curriculum coverage is usually associated with high inter-item
variance, and with high pupil-item interaction effects. Even in a very
narrowly defined aspect like addition involving 2-digit numbers, items with
very different facilities can be written, and different pupils might find one or
other more or less difficult than the next (think of 24 + 42, 24 + 42 + 35, 13 +
73 + 7, all perfectly valid items under the definition). It is highly likely that
Item Response Theory (IRT) would not be useful in the SSA, because in order
for the data to fit an IRT model, even one with three or more parameters, a
proportion of the existing items, valid as they are in curriculum terms, might
have to be eliminated. To explore the applicability of IRT models in this context,
a ‘spiral’ booklet administration strategy was used in 2006 to provide appro-
priate linked-item data.

G-theory is useful in this kind of sample-based application, in providing a
versatile methodology for investigating sources of measurement error, and
quantifying their relative contributions so that strategies for reducing the error
might be identified. For researcher and measurement practitioners alike EduG
is a welcome tool in this respect.



72 SANDRA JOHNSON

NOTES

1. EduG is the result of a collaboration between research groups in Switzerland and
Canada, driven by the efforts and enthusiasm of Jean Cardinet. The software, along
with its supporting documentation, is downloadable free from the website
[www.irdp.ch/edumetrie/logiciels.htm], in both French and English versions.

2. [http://www.aifl-na.net/]

3. The banding criteria, while in principle arbitrary, are based on the professional
judgment of subject specialists. They were first used for reporting reading attainment
in the 2001 AAP English Language survey, and have continued into the SSA.
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