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Abstract 
Within the COVID-19 pandemic and the new normal period, online learning has become one of the main 
options for learning. Previous studies on self-regulated learning have shown that it was a better predictor 
of online learning effectiveness. However, this discussion has not been extended to the situation of the 
COVID-19 pandemic. To address this gap, this study aims to explore the relationship between the three 
stages of self-regulated learning (SRL) and learning ineffectiveness (LI). Data of 370 high school students 
were collected during the period of COVID-19. Structural equation modeling was used to perform 
confirmatory factor analysis on the data. Findings show that the preparatory stage was positively related to 
the stages of performance and appraisal, and the performance stage was positively related to the appraisal 
stage; on the other hand, the stages of performance and appraisal were negatively related to learning 
ineffectiveness. In addition, the preparatory stage had no direct relation to learning ineffectiveness, but the 
preparatory stage was correlated with learning ineffectiveness, mediated by the stages of performance and 
appraisal. These results suggest that better performance in the three stages of self-regulated learning 
decrease learners’ perceived online learning ineffectiveness. This understanding can have implications for 
global education. 
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Introduction 
COVID-19 has had a destructive impact on the field of society, culture, religion, economy and education all 
over the world (Mustajab et al., 2020). Offline teaching activities in schools have been suspended and 
replaced with online education (Zhang et al., 2020). Compared with traditional school-based education, 
online learning is based on open and distributed learning, without the limitations of place, time, and 
physical materials. Open and distributed learning gives learners more autonomy in their online self-
regulated learning (SRL). Samruayruen et al. (2013) have shown that in an open and distributed education 
environment, learners’ SRL was more successful. SRL is a process that is initiated by learners to control 
their learning (Tuti et al., 2021). However, online learners seldom interact with or receive guidance and 
supervision from instructors (Broadbent & Poon, 2015; Su & Wu, 2021), which might result in learners 
struggling to regulate their learning processes (Jansen et al., 2019). It is therefore important to study 
learners’ online SRL during the period of COVID-19 (Zhu et al., 2020). 

Hong et al. (2021) has divided SRL into 6 sub-constructs: task strategy, mood adjustment, self-evaluation, 
environmental structure, time management, and help-seeking. There are several models of SRL with 
similar components and processes (Chen & Bonner, 2020). Adam et al. (2017), in their review, conclude 
that previous SRL models comprised the three stages: preparatory, performance, and appraisal. Many 
researchers have discussed the effects of multiple components of SRL or a single stage on other factors. For 
instance, the relationships between learning environments, students’ beliefs, and multiple dimensions of 
SRL were explored by Maison and Syamsurizal (2019). Cosnefroy et al. (2018) analyzed the correlation 
between the forethought stage of SRL and self-regulation failure. Nevertheless, Zeidner and Stoeger (2019) 
indicate that few studies have considered all stages of SRL simultaneously. However, Liu et al. (2021) 
discussed the gender difference in each of the three stages of online SRL. The results found that in each of 
the three stages of SRL female students performed better than male students. Hong et al. (2021) examined 
the impact of academic procrastination on each of the six sub-constructs of SRL, and each of the six sub-
constructs of SRL on learning ineffectiveness (LI). Thus, this study aims to explore the impact of the three 
stages of SRL: preparatory, performance, and appraisal, not the six sub-constructs of SRL, on LI. According 
to the effects of the three stages of SRL on learning effectiveness or ineffectiveness, instructors can provide 
targeted and efficient support for students. 

Benefiting from the openness and distribution of online learning, students’ online learning effectiveness 
has been improved accordingly. For example, Zhao, Liu, and Su (2021) have shown students to demonstrate 
better learning performance in open and distributed education than in face-to-face learning. Students with 
better ability to self-regulate their online learning were found to have significantly higher levels of perceived 
effectiveness than those with less ability in this area (Charo et al., 2020). When engaged in online learning, 
if students lack SRL skills, they may not be able to complete the learning tasks they are assigned in their 
online courses (Barnard et al., 2009). The abovementioned studies show that students’ SRL reduces their 
learning ineffectiveness (LI) level. However, in the context of COVID-19, all the offline learning suddenly 
changed to 100% online learning. This study is to explore whether students’ SRL was effective and how the 
different SRL stages affected students’ learning effectiveness during this transformation. When students 
study online, it is necessary and significant to grasp their perceptions of online learning effectiveness or 
ineffectiveness (Hong et al., 2021). In this study, LI was adopted for high school students to self-rate their 
perceived learning performance. Therefore, this study explores how the three stages of SRL were related to 
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LI while high school students were learning online. The findings of the relationships between online SRL 
and online LI can provide new insights into distance education and provide relevant references for coping 
with the future online learning research on the normalization of the epidemic. 

 

Literature Review 

Online Self-Regulated Learning  
Before COVID-19, most students studied face to face in classrooms and did not experience 100% online 
learning. Prior studies on SRL were conducted in online or offline learning contexts, but little research has 
been looked at during COVID-19. Students were suddenly faced with the extremely difficult task of self-
regulating their learning activities at home amid the influence of the COVID-19 pandemic (Zhang et al., 
2021). The shift from offline to online learning during COVID-19 has caused students to lack instructors’ 
guidance, requiring them to have a greater ability to regulate themselves in their learning (Lee et al., 2020). 
During the specific time of COVID-19, many factors might have multiple negative effects on learners’ SRL 
processes (Cai et al., 2020). SRL is an important capability to actively participate in constructing and 
interpreting knowledge in a student-centered learning environment (Alsancak Sirakaya & Ozdemir, 2018). 
“SRL is an active and constructive process in which learners set their own learning goals and then attempt 
to regulate, plan and control their motivation, cognition, and behavior” (Pintrich, 2000, p.453). During this 
process, they are both guided and limited by their goals and the environmental background characteristics 
(Pintrich, 2000.p.453). Learning tasks must have clear beginnings, middles, and ends (Cleary et al., 2012). 
In online learning courses, there is a clear learning process for before, during, and after lessons. 

Several SRL models presenting different stages and subprocesses have been proposed. For example, based 
on social cognitive theory, Zimmerman (2000) described an SRL model as comprising the forethought, 
performance, and self-reflection stages. Hadwin et al. (2018) has developed a self-regulation model and 
divided it into the three components of negotiation and awareness of the task, strategic task engagement, 
and adaptation. Adam et al. (2017) proposed SRL comprises the stages of preparatory, performance, and 
appraisal. Thus, the present study selected the three stages which correspond to behaviors of before, during, 
and after online lessons, as the cyclic processes during the COVID-19 pandemic. During each stage, students 
use different strategies to monitor and control their learning (Zimmerman, 2000). 

In the preparatory stage, the learning environment (e.g., stable Internet connection) and individual 
characteristics (e.g., mood) have been highlighted as essential components by Hong et al. (2021). Thus, this 
study specified the preparatory behaviors before engaging in online lessons focusing on mood adjustment 
and structuring environments. In addition, Adam et al. (2017) stated that the performance stage of SRL is 
when the actual task is accomplished while monitoring and controlling the progress of performance. In the 
performance stage, learners use cognitive and certain strategies (e.g., task strategies) and meta-cognitive 
monitoring processes (e.g., time management) to accomplish tasks (Ridgley et al., 2020; Zhang et al., 2021). 
Thus, this study specified the performance behaviors during online lessons, from two aspects of time 
management and the task strategy, When learners completed the learning tasks, they enter the appraisal 
stage, during which they monitor their learning progress, design help-seeking plan (Zimmerman, 2000), 
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evaluate learning effectiveness (Cleary et al., 2012; Zimmerman, 1990). Considering this, this study 
specified the appraisal behaviors after engaging in online lessons, from two aspects of help seeking and self-
evaluation. 

Many studies of online learning have shown a relationship between learning achievement and the subscales 
of SRL, such as help seeking (Won et al., 2021), and learning environments (Maison & Syamsurizal, 2019). 
However, most studies did not use all stages of the SRL model (Zeidner & Stoeger, 2019). To improve 
learners’ learning and SRL skills, differential effects of SRL in models and theories should be applied by 
scholars and teachers (Ernesto, 2017). Therefore, this study focuses on three stages of SRL during the 
COVID-19 pandemic. 

Learning Ineffectiveness (LI) in the Context of COVID-19 
With the help of distance education and technology support, students have easy and convenient access to 
online learning. Online learning effectiveness can be reflected by learners’ evaluation of the performance in 
the cognitive, affective, and psychomotor domains of online learning (Zhao, He, & Su, 2021). The online 
learning carried out during the COVID-19 pandemic has been effective (Bahasoan et al., 2020). Although 
learners can learn and benefit from online learning, the learning effectiveness of online learning compared 
with traditional learning is still considered a debatable issue. For example, Zhao, Liu, and Su (2021) show 
that compared with traditional learning, flipping classroom learning supported by MOOCs results in better 
learning achievement; however, Carrol and Burke (2010) support that traditional learning was better than 
online learning. To ensure effective online learning, teachers and course designers must understand 
learners’ perceptions of online learning effectiveness or ineffectiveness (Hong et al., 2021). 

Adolescents are likely to be biased in their tendency to react (van Herk et al., 2004). For example, facing 
difficulties, learners may feel dissatisfied with engaging in online courses (Rabin et al., 2020). Ruhland and 
Brewer (2001) argue that students’ perceived ineffectiveness of online learning is also a factor that should 
be captured as part of learning outcomes. Therefore, a good measurement of learning effectiveness requires 
a considerable understanding of how to best link the course to online learning and how to make online 
learning meaningful for students’ needs and experiences. Hong et al. (2021) originally proposed LI, defined 
as learners self-evaluating how they feel about their online learning performance. However, limited 
research exists on LI related to learners’ online learning. Thus, this study aimed to investigate students’ 
perceptions of LI during the COVID-19 pandemic. 

Research Hypotheses 
Extensive research has been done on the impact of SRL on learners’ learning and academic achievement 
(Jansen et al., 2019). Previous studies have found that SRL was a good predictor of academic achievement 
(e.g., Moghadari-Koosha et al., 2020). Six SRL sub-constructs influenced perceived LI (Hong et al., 2021). 
In online learning courses, there is a clear learning process of before, during, and after lessons. These three 
steps in the learning process correspond to the three stages of the SRL process model (Adam et al., 2017). 
This study furthers the previous study to explore the relationship between the stages of SRL and LI in the 
context of online learning. Therefore, based on Adam et al.’s (2017) proposed SRL model, we developed the 
conceptual model shown in Figure 1 for this study. This model reveals the relationship between learners’ 
SRL behaviors at various stages of SRL and their respective influences on their LI. 
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Figure 1 

Research Model 

   

According to Zimmerman (2015), SRL is a cyclical process whereby learners are engaged in three distinct 
stages. Boom et al. (2004) revealed the self-regulated learning competence map, showing that the learning 
process includes beginning, performing, and finishing. The beginning stage is directed to the performing 
stage, and the performing stage is directed to the finishing stage. The emotion regulation strategy is 
associated with adaptive strategies, such as reappraisal (Aldao et al., 2010). Mood adjustment is considered 
as an essential component of the preparatory stage. Thus, the following hypotheses were proposed: 

H1: The preparatory stage (PPS) is positively correlated with the performance stage (PFS) in online 
learning. 

H2: PFS is positively correlated with the appraisal stage (AS) in online learning. 

H3: PPS is positively correlated with AS in online learning. 

Academic achievement has significant relationships with the behaviors of the preparatory (e.g., Lehmann 
et al., 2014), performance (e.g., Alghamdi et al., 2020), and appraisal stages (e.g., Colthorpe et al., 2019). 
According to Adam et al.’s (2017) SRL process model, this study divided the six constructs of Hong et al.’s 
(2021) SRL into the preparatory, performance, and appraisal stages. Hong et al. (2021) found all of the six 
sub-constructs of SRL were negatively correlated with LI. Thus, the interaction effects between the three 
stages of SRL and LI were hypothesized as follows: 

H4: AS is negatively correlated with students’ LI in online learning. 

H5: PPS is negatively correlated with students’ LI in online learning. 

H6: PFS is negatively correlated with students’ LI in online learning. 

 



Effects of Online Self-Regulated Learning on Learning Ineffectiveness in the Context of COVID-19 
He, Zhao, and Su 

30 
 

Methodology 

Participants and Procedure 
High school students have to face the college entrance examination, which is a concern for students all 
around the world, and especially in China. Compared with other levels of education, high school is more 
intense, and the online learning of high school students has received substantial attention from society 
during the COVID-19 pandemic. Therefore, we selected high school students at various grade levels in 
Jiangsu Province, China, as participants for this study. Adapting purposive sampling, teachers who gave 
online courses were invited to distribute the questionnaire to their students between April 10 and April 20, 
2020. All participants were informed that the online questionnaire would be used only for this study and 
that their privacy would be protected. A total of 395 students from the high schools voluntarily and 
anonymously completed the online survey. If the questionnaires have missing values needed for the data 
analysis, they would be removed, leaving 370 samples for analysis. 

The participants from grades 1 to 3 (M = 2.14, SD = 1.140) included 75 males (20.3%) and 295 females 
(79.7%), whose ages were from 15 to 21 years (M = 16.85, SD = 1.156). In addition, all participants had taken 
part in online lessons. Of all participants, the average study hours per day was 2.40 (SD = 0.847), and that 
semester’s online courses number was between two and nine (M = 4.72, SD = 1.190). Of all participants, 
96% studied online courses for 50% of the time during that semester. 

Instruments 
The questionnaire items were adapted from prior studies and were translated into Chinese by experts. Three 
high school students were invited to check the whole questionnaire and give comments to all the items to 
ensure the readability of the measurement items. Each of the items was scored by a 5-point Likert scale, 
from 1 for strongly disagree to 5 for strongly agree, with 3 representing neutral. Finally, the reliability of the 
constructs was subsequently tested. 

Online SRL of Measurement 
According to the SRL instrument of Hong et al. (2021), we designed the scale of the instrument with 22 
items consisting of six sub-constructs with good reliability and validity, covering the three stages. The 
preparatory stage includes mood management, and environment structuring; the performance stage 
includes adapting time management and task strategies; and the appraisal stage includes help seeking and 
self-evaluation. The preparatory stage contains 8 items, such as, “Before I study online, I am used to 
finishing the coursework to avoid distractions in the online class.” The performance stage contains 7 items, 
such as “During learning online, I will adjust my learning style according to the actual learning.” The 
appraisal stage contains 7 items, for example, “After learning online, I test and summarize what I have 
learned.” 

Learning Ineffectiveness of Online Learning Measurement 
A good learning effectiveness measurement must capture changes in learners’ cognitive and affective 
development as a result of their learning experiences. Previous studies took ineffectiveness instead of 
effectiveness to assess learners’ online learning performance. For example, the scale of learning 
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ineffectiveness in the online learning context was developed to measure college students’ LI in the context 
of COVID-19 (Hong et al., 2021). Therefore, eight items were designed in this study to measure the online 
learning ineffectiveness of high school students, for example, “Since learning online, my learning 
confidence has decreased.” 

Data Analysis 
According to Thompson’s (2000) recommendation, the number of samples should be between 10:1 and 15:1 
for the number of observed variables. This ratio of sample size (N = 370) to observed variables (30 items) 
is reasonable. IBM SPSS Statistics was used to analyze data from all 370 high school students. Next, 
descriptive statistics of population information and correlation analysis were obtained using SPSS 24. Then 
confirmatory factor analysis (CFA) was performed to further test whether the questionnaire satisfied the 
reliability and validity via Amos (version 22.0). Finally, we conducted structural equation modeling (SEM) 
to evaluate the hypothetical structural model. 

 

Results 

Reliability and Validity Analysis 
First, items with a value of factor loadings lower than .50 were deleted in each construct (Hair et al., 2011). 
During this process, three items in PPS, one item in PFS, and two in AS with factor loadings lower than .50 
were deleted. After conducting CFA, items with the highest residual value in each construct were deleted 
(Hair et al., 2019). During this process, two items in PPS and two in PFS with the highest residual values 
were deleted. To meet the criteria, some items in each construct needed to be removed: one item in AS and 
three in LI were removed. The measurement model finally exhibited a good fit, with chi-square divided by 
the degrees of freedom (χ2/df) = 2.482, goodness of fit index (GFI) = .925, Bentler–Bonett normed fit index 
(NFI) = .959, comparative fit index (CFI) = .975, and root mean square error of approximation (RMSEA) = 
.063. The remaining 16 items—which contained three PPS items, four PFS items, four AS items, and five LI 
items—were reserved for further analysis. 

Second, composite reliability (CR) and Cronbach’s alpha (α) were considered together to assess the internal 
model’s consistency. Hair et al. (2019) suggest that the CR should exceed .70. DeVellis (2012) recommends 
that an acceptable α value should be above .70. Thus, a construct is considered to have achieved internal 
consistency when both the CR and α exceed .70. Table 1 shows that the CR of all constructs ranged from 
.862 to .939, and α ranged from .721 to .900. Therefore, the results suggest that each construct 
measurement variable in the questionnaire had acceptable reliability and internal consistency. 

Third, we calculated the construct’s average variance extracted (AVE) and the variable measurement 
condition factor to ascertain the convergent validity. When the convergent effectiveness of construct is 
sufficient, the value of AVE should exceed .50 (Fornell & Larcker, 1981). Additionally, the convergent 
validity requirement is satisfied if the variable’s measurement factor is greater than .50 (Hair et al., 2019). 
Table 1 indicates that the AVE of all constructs exceeded .50 (ranging from .677 to .756), and each item’s 
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standardized factor loading also exceeded .50 (ranging from .696 to .937). Therefore, the questionnaire had 
acceptable convergent validity. 

Table 1 

Reliability and Validity Analysis 

Latent variable 
Measure 

item 
Standardized 
factor loading 

CR AVE Cronbach’s α 

Preparatory stage 

(PPS) 

PPS1 .748 

.862 .677 .721 PPS2 .888 

PPS3 .826 

Performance stage 

(PFS) 

PFS1 .897 

.921 .747 .819 
PFS2 .921 

PFS3 .922 

PFS4 .696 

Appraisal stage 

(AS) 

AS1 .781 

.913 .725 .839 
AS2 .803 

AS3 .907 

AS4 .906 

Learning ineffectiveness 

(LI) 

LI1 .743 

.939 .756 .900 

LI2 .903 

LI3 .921 

LI4 .937 

LI5 .828 

Note. CR = composite reliability; AVE = average variance extracted. 

Model Fit Analysis 
The model fit and statistical significance of the hypothesized paths between the four potential variables were 
examined to test the structural model. Kline (2011) suggests that GFI, NFI, and CFI values exceeding .90, a 
χ2/df value less than 3, and an RMSEA value less than .08 can generally be regarded as representing 
acceptable goodness of fit. The results show that the data (χ2/df = 2.466, GFI = .902, NFI = .904, CFI = 
.940, RMSEA = .077) had an acceptable fit of the hypothesized model. It indicated that the hypothesis 
model proposed in this study has good fitness. 
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Path Analysis 
The standardized path coefficients (β) of the model of the study are represented in Figure 2 and Table 2. 
The results indicate that hypotheses 1, 2, 3, 4, and 6 were supported. PPS was positively related to PFS and 
AS (β = .808, t = 15.695; and β = .325, t = 5.357, respectively). PFS was positively related to AS (β = .636, t 
= 9.936). Moreover, PFS and AS were negatively related to LI (β = −.453, t = −4.865; and β = −.365, t = 
−3.495, respectively). However, PPS was not significantly related to LI (β = −.077, t = −1.062). These results 
indicate that H5 was not supported. 

Table 2 

Coefficients of the Hypothesized Model 

Hypothesis Path β SE t Supported 

H1 PPS→PFS .808 .060 15.695* Yes 

H2 PFS→AS .636 .062 9.936* Yes 

H3 PPS→AS .325 .068 5.357* Yes 

H4 AS→LI −.365 .096 −3.495* Yes 

H5 PPS→LI −.077 .075 -1.062 No 

H6 PFS→LI −.453 .082 −4.865* Yes 

Note. β = standardized coefficient; H = hypothesis; PPS = preparatory stage; PFS = performance stage; AS = appraisal 

stage; LI = learning ineffectiveness. 

* p < .001. 

The coefficient of determination (R2) represents the predictive ability of the model (Fornell & Larcker, 
1981), and R2 values higher than .6 are considered to indicate a high impact effect (Sanchez, 2013). The 
explanatory power of PPS to PFS was 65.3%, the explanatory power of PPS and PFS to AS was 84.4%, and 
the explanatory power of PFS and AS to LI was 74.4%. Therefore, all variables had good predictive capacity 
(Hair et al., 2012). 

In addition, f2 values greater than .8 are considered to have a high effect size, between .2 and .8 are 
considered medium, and less than .2, small (Cohen, 1988). As shown in Figure 2, the f2 ranged from 1.740 
to 5.410, indicating that the effect size was good. Therefore, the paths between the variables in this study 
were well verified (Hair et al., 2019). 
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Figure 2 

The Structural Model with Standardized Coefficients 

  

Note. * p < .001. 

Finally, 5,000 resample bootstrappings were performed to provide additional evidence related to the 
significance of the indirect effects. The bootstrapping 95% confidence interval (CI) of the lower and upper 
bounds of indirect effects did not include zero, indicating that the paths were significant (Preacher et al., 
2007). It was significant for the mediated effect of the study model (β = −.672) with 95% CI from −.798 to 
−.565, indicating that PFS and AS of SRL did have a full mediating effect on the negative correlation 
between PPS and online LI. 

 

Discussion 
The COVID-19 outbreak has caused a growing number of students to adopt online learning, but the 
effectiveness of online learning is a controversial issue. Research on SRL has been largely from a macro 
perspective, for example, learning behavior, learning ability, and academic performance. However, there is 
still a lack of micro perspectives on the interaction mechanism among the various stages of SRL, and it is 
not clear which stage of behavior has the strongest effect on learning effectiveness. Adopting a micro 
perspective, this study focused on exploring how stages of learners’ SRL behavior affected their perceptions 
of learning ineffectiveness. The results show that SRL behaviors in the stage of preparatory had a positive 
effect on the stages of performance and appraisal, and the performance stage had a positive influence on 
the appraisal stage. We also found that the preparatory stage of SRL affects learning ineffectiveness by 
mediating the effect of the performance and appraisal stages. 

Previous studies indicate that each process in the preparatory stage initiates actions that the learner engages 
in when performing the task (Ridgley et al., 2020). For example, mood actively activates pre-reflection in 
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SRL (Lehmann et al., 2014), which initiates actions of the performance stage. In this study, the behaviors 
in the preparatory stage had a direct positive impact on the performance stage, indicating that if the 
preparation during the preparatory stage is sufficient, the performance stage process will be easier. Thus, 
H1 was positively supported. 

The use of strategy and meta-cognitive monitoring in the performance stage subsequently influence the 
appraisal stage, reflect on and evaluate their progress and goal attainment (Ridgley et al., 2020). For 
example, time management is related to evaluation, reflection, and reaction (Wolters & Brady, 2020). The 
results show that behaviors in the performance stage had a positive effect on the appraisal stage, indicating 
that learners would perform better in the appraisal stage according to the adopted task strategies and 
actively monitor the length of time in the performance stage, positively supporting H2. 

Learners need to manage environmental factors such as computer access at home before studying (Cai et 
al., 2020). Emotion regulation strategies were correlated with reappraisal (Aldao et al., 2010). Pekrun et al. 
(2011) have proposed that positive emotions may be beneficial in most cases. This could indicate that 
learners will perform better in the appraisal stage according to their mood adjustment and environment 
structuring during the preparatory stage. The results of the present research verify that the preparatory 
stage is positively related to the appraisal stage, supporting H3. 

Tzeng and Nieh (2015) state that in the appraisal stage, self-evaluations and self-reactions led learners to 
feel that their learning was effective and motivated them to continue to work diligently because they 
believed they could make further progress. Moreover, Zhu et al. (2011) found that learners who were 
developing help-seeking schemes, such as searching for help on the Internet, were more likely to have good 
academic performance. By investing more energy in self-evaluation and help seeking after online courses, 
learners increase their learning effectiveness. The results of the present research verify that the appraisal 
stage can negatively predict perceived learning ineffectiveness, negatively supporting H4. 

Cosnefroy et al. (2018), constructing a self-regulated learning failure model, shows that forethought 
processes affect academic performance by affecting the performance stage. The actual situation (e.g., noise) 
and individual characteristics (e.g., mood) influence learning outcomes (Lehmann et al., 2014). Based on 
the studies mentioned, this research considered that higher SRL when regulating mood and preparing the 
environment for distance learning can promote learners’ behavior within the performance and appraisal 
stages and reduce learning ineffectiveness. Although the preparatory stage did not show a direct influence 
on learning ineffectiveness in this study, the preparatory stage was correlated with learners’ learning 
ineffectiveness by mediating the effect of the other two stages. Therefore, H5 was not supported. 

The results show that the performance stage of SRL has a high indirect effect on learning ineffectiveness. If 
they consider a variety of factors such as task strategy and time management during online courses, learners 
can reduce their learning ineffectiveness; some previous studies (e.g., Alghamdi et al., 2020; Wolters & 
Brady, 2020) report similar results. Their research shows that task strategy and time management can have 
positive impacts on academic performance and achievement, respectively. Thus, H6 was negatively 
supported. 
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Conclusions 
During the outbreak of COVID-19, online learning was comprehensively applied in education. Ways to 
promote online learning effectiveness in the context of COVID-19 is an important issue. The online learning 
environment demands learner-centeredness and self-regulation. Self-regulated learning plays a crucial role 
in online learning. This study divided SRL into three stages and explored the relationship of high school 
students’ SRL from the three stages and learning ineffectiveness. Results indicate that SRL has a predictive 
effect on learning effectiveness, and high SRL levels can reduce the ineffectiveness of online learning. 

Implications 
The COVID-19 pandemic has led to the closure of schools around the world, and offline learning has been 
replaced with distance learning. This study has some implications for online learning in distance education. 
Epidemic prevention and treatment are moving the world toward normalization. Learning in the post-
pandemic era must integrate online and offline learning and maximize students’ learning (Mei, 2020), 
highlighting the importance of online learning and SRL. The exploration of students’ online SRL is 
conducive to understanding the current situation of students’ online SRL and points to further improving 
it. This study has certain reference value for coping with future online learning to deal with such 
emergencies, which may occur anywhere in the world. 

The theoretical significance of the present research is to clarify the impacts of SRL on learning 
ineffectiveness during COVID-19. This study is also to provide a practical contribution, which is the results 
show that the preparatory stage of SRL through the performance and appraisal stages affects learners’ 
online learning ineffectiveness. SRL interventions effectively improved learners’ SRL, performance, and 
academic achievement (e.g., Jansen et al., 2019). The results of this study can be applied by high school 
teachers to enhance students’ adaptability in SRL situations by implementing different interventions 
before, during, and after lessons. 

Limitations and Future Study 
Several limitations should be acknowledged in this study. First, the sample size was small, and all 
participants were from the Jiangsu Province, so it is hard to make sure that the sample represents high 
school education institutions at all levels. Thus, the sample cannot represent all Chinese high school 
students. Future studies need to collect more and larger representative samples to enhance the conclusions 
of the study. 

Second, the population of the present study was almost 80% female, which may have led to the distribution 
bias of the results. Gender difference is a potentially important factor affecting SRL and learning 
performance (Bezzina, 2010). Future studies may explore the role of gender, the three stages of SRL, and 
learning ineffectiveness. 

Moreover, it is increasingly important to explore predictors of online learning success as online courses are 
becoming more flexible and accessible (Broadbent & Poon, 2015; Su, Ding, & Chen, 2021). Other factors 
not examined in this study, such as self-efficacy, self-direction, learning motivation, and learning 
satisfaction, may also affect students’ perceived ineffectiveness of online learning. Researchers might 
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consider including other factors that may affect the perceived ineffectiveness of online learning in future 
studies. 
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