
Copyright (c) Marina Lepp, Tauno Palts, Piret Luik, Kaspar Papli, Reelika
Suviste, Merilin Säde, Kaspar Hollo, Vello Vaherpuu, Eno Tõnisson, 2018

This document is protected by copyright law. Use of the services of Érudit
(including reproduction) is subject to its terms and conditions, which can be
viewed online.
https://apropos.erudit.org/en/users/policy-on-use/

This article is disseminated and preserved by Érudit.
Érudit is a non-profit inter-university consortium of the Université de Montréal,
Université Laval, and the Université du Québec à Montréal. Its mission is to
promote and disseminate research.
https://www.erudit.org/en/

Document generated on 04/23/2024 5:24 p.m.

International Review of Research in Open and Distributed Learning

Troubleshooters for Tasks of Introductory Programming
MOOCs
Marina Lepp, Tauno Palts, Piret Luik, Kaspar Papli, Reelika Suviste, Merilin
Säde, Kaspar Hollo, Vello Vaherpuu and Eno Tõnisson

Volume 19, Number 4, September 2018

URI: https://id.erudit.org/iderudit/1055528ar
DOI: https://doi.org/10.19173/irrodl.v19i4.3639

See table of contents

Publisher(s)
Athabasca University Press (AU Press)

ISSN
1492-3831 (digital)

Explore this journal

Cite this article
Lepp, M., Palts, T., Luik, P., Papli, K., Suviste, R., Säde, M., Hollo, K., Vaherpuu, V.
& Tõnisson, E. (2018). Troubleshooters for Tasks of Introductory Programming
MOOCs. International Review of Research in Open and Distributed Learning,
19(4). https://doi.org/10.19173/irrodl.v19i4.3639

Article abstract
Learning programming has become more and more popular and organizing
introductory massive open online courses (MOOCs) on programming can be
one way to bring this education to the masses. While programming MOOCs
usually use automated assessment to give feedback on the submitted code, the
lack of understanding of certain aspects of the tasks and feedback given by the
automated assessment system can be one persistent problem for many
participants. This paper introduces troubleshooters, which are help systems,
structured like decision trees, for giving hints and examples of certain aspects
of the course tasks. The goal of this paper is to give an overview of usability
(benefits and dangers) of, and the participants’ feedback on, using
troubleshooters. Troubleshooters have been used from the year 2016 in two
different programming MOOCs for adults in Estonia. These MOOCs are
characterized by high completion rates (50–70%), which is unusual for MOOCs.
Data is gathered from the learning analytics integrated into the
troubleshooters’ environment, letters from the participants, questionnaires,
and tasks conducted through the courses. As it was not compulsory to use
troubleshooters, the results indicate that only 19.8% of the users did not use
troubleshooters at all and 10% of the participants did not find troubleshooters
helpful at all. The main difference that appeared is that the number of
questions asked from the organizers about the programming tasks during the
courses via helpdesk declined about 29%.

https://creativecommons.org/licenses/by/4.0/
https://apropos.erudit.org/en/users/policy-on-use/
https://www.erudit.org/en/
https://www.erudit.org/en/
https://www.erudit.org/en/journals/irrodl/
https://id.erudit.org/iderudit/1055528ar
https://doi.org/10.19173/irrodl.v19i4.3639
https://www.erudit.org/en/journals/irrodl/2018-v19-n4-irrodl04233/
https://www.erudit.org/en/journals/irrodl/

International Review of Research in Open and Distributed Learning
Volume 19, Number 4

September – 2018

Troubleshooters for Tasks of Introductory Programming
MOOCs

Marina Lepp, Tauno Palts, Piret Luik, Kaspar Papli, Reelika Suviste, Merilin Säde, Kaspar Hollo, Vello Vaherpuu, and Eno
Tõnisson
University of Tartu, Estonia

Abstract

Learning programming has become more and more popular and organizing introductory massive open

online courses (MOOCs) on programming can be one way to bring this education to the masses. While

programming MOOCs usually use automated assessment to give feedback on the submitted code, the lack

of understanding of certain aspects of the tasks and feedback given by the automated assessment system

can be one persistent problem for many participants. This paper introduces troubleshooters, which are help

systems, structured like decision trees, for giving hints and examples of certain aspects of the course tasks.

The goal of this paper is to give an overview of usability (benefits and dangers) of, and the participants’

feedback on, using troubleshooters. Troubleshooters have been used from the year 2016 in two different

programming MOOCs for adults in Estonia. These MOOCs are characterized by high completion rates (50–

70%), which is unusual for MOOCs. Data is gathered from the learning analytics integrated into the

troubleshooters’ environment, letters from the participants, questionnaires, and tasks conducted through

the courses. As it was not compulsory to use troubleshooters, the results indicate that only 19.8% of the

users did not use troubleshooters at all and 10% of the participants did not find troubleshooters helpful at

all. The main difference that appeared is that the number of questions asked from the organizers about the

programming tasks during the courses via helpdesk declined about 29%.

Keywords: MOOC, open education, programming, troubleshooting system

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

57

Introduction

Teaching introductory programming courses has become an important subject matter in Estonia in

connection with the need to raise awareness of, and interest in, information technology. Supporting the

learning of the programming language Python, a massive open online course (MOOC) in Estonia called

About Programming (in Estonian, Programmeerimisest maalähedaselt) was created in 2014. Research

has shown that the average completion rate for MOOCs in the world is approximately 15% (Jordan, 2014;

Siemens, 2013), but in our case the percentage of completions has been constantly over 50%. This paper

addresses the idea of having a helpdesk supporting the participants in the course and reducing the number

of questions from the participants by creating troubleshooters for the programming tasks.

Programming MOOCs rely mostly on automated assessments, which enable the participants to post the

solutions for the tasks in a way that the system could automatically analyze the solutions and give

automated feedback. Self-assessment should be used as an assessment for learning instead of an

assessment of learning (Admiraal, Huisman, & Pilli, 2015). In programming, some mistakes in the code can

be very difficult to resolve and therefore our MOOCs offered a helpdesk email address to answer the

questions that appear during the course. The instructors and university students who lent their assistance,

agreed to answer the helpdesk emails in less than 8 hours. While having people on watch all the time is not

very cost effective, the helpdesk offers instant help that beginner learners need. The questions asked from

the helpdesk give a lot of information about the problems occurring with the tasks during the course.

To reduce the number of questions asked from the helpdesk, troubleshooters were provided for every

programming task, starting from 2016. The troubleshooters include collections of answers and clues to the

questions, which can arise when solving the course tasks.

This paper gives an overview of the creation of the troubleshooters to support the course and presents the

learners’ opinions about the troubleshooters. The impact of troubleshooters is discussed in the context of

the resources needed for creating troubleshooters and the results of course optimization, needed to keep it

automated.

Theoretical Background

This section provides a theoretical background on supporting online programming courses with helpdesk

and troubleshooters by categorizing programming mistakes that beginners make.

MOOCs

Massive Open Online Courses (MOOCs) are one of the recent models in open and distributed learning

(Downes, 2017). The history of MOOCs can be divided into two phases: cMOOC (connectivist MOOCs)

period and xMOOC (content-based MOOCs) period (Baturay, 2015). However, there is a move away from

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

58

the cMOOC/xMOOC division towards recognition of the multiplicity of MOOC designs, purposes, topics,

and teaching styles (Admiraal et al., 2015).

While the educational world is proliferated with MOOCs and they are hyped in the media, there are still

some challenges for MOOCs to overcome (Veletsianos & Shepherdson, 2016). One of the most salient

challenges is the dropout rate (Siemens, 2013), with widely cited figures of 10% completion rates (Ebben &

Murphy, 2014). Researchers are trying to examine the reasons behind the low retention rates (Greene,

Oswald, & Pomerantz, 2015; Hone & El Said, 2016). It has been found that a lack of incentive, insufficient

prior knowledge about the topic, ambiguous assignments, and having no one to turn to for help can be

possible reasons for non-completion (Hew & Cheung, 2014). MOOC content and interaction with the

instructor were also shown to have a significant effect on retention (Hone & El Said, 2016).

Due to having thousands of participants per instructor, it is impossible for MOOC instructors to conduct

assessments and provide individual feedback (Suen, 2014). Different models of interaction are used, such

as automated feedback (Pieterse, 2013), peer support (Onah, Sinclair, & Boyatt, 2014), self-assessment

(Papathoma, Blake, Clow, & Scanlon, 2015), helpdesk (Warren, Rixner, Greiner, & Wong, 2014), and

scaffolding messages like troubleshooters (Vihavainen, Luukkainen, & Kurhila, 2012).

Helpdesks

As the number of questions on various topics of the course rises and it is difficult to find answers to the

questions in a course with thousands of participants, we were faced with the challenge of how to retain the

availability of sufficient support to positively finish the course. Using a helpdesk could be one option for

answering the questions and monitoring the process. Previous MOOCs that used a helpdesk were rated

extremely positive (Warren et al., 2014).

A helpdesk could use different kinds of data, video, and voice support (Motsuk, 1999), but our course offered

a helpdesk email from the organizers of the MOOCs (faculty members and students) who had to answer any

letters in less than 8 hours. The possibility to ask questions from the helpdesk could have been one of the

key factors that helped more than 50% of the participants finish our courses (Lepp et al., 2017a).

As course participants send emails to the helpdesk address and receive answers from it, several helpdesk

systems are available for managing such a system. A helpdesk system needs to be usable online, look nice

and simple for users, be easy to use, include various functions, like a search engine, option to set labels to

letters, and archive the letter data for later analysis. Developing such a system can be too complex task for

a simple project (Washburn & El-Bayoumi, 2003). In our case an online helpdesk system, called Freshdesk

(https://freshdesk.com/) was used.

Using a helpdesk has several advantages for organizers, too. One of the benefits is that engaging students

in answering the helpdesk emails can have a positive influence on their studies (McRitchie, 2009) and

reduce the cost of helpdesk (Sinnett & Barr, 2004). When counting the number of people getting help and

being educated by MOOCs, the cost per participant can be rather low too. Frequently asked questions can

be gathered to create helpful troubleshooters for each course task.

Troubleshooters

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

59

Troubleshooters are systems that are mostly used for IT services helping to solve problems manually by

clicking answers to various questions to find a solution to the problem in a system with a decision tree

structure. A similar kind of self-assessment (exercises with built-in scaffolding messages inside the

programming environment) has been tried in case of programming MOOC and found to be fruitful

(Vihavainen et al., 2012).

One way of identifying the problems that need to be included in troubleshooters would be mining the course

data (and constructing, for example, Bayesian networks; Skaanning, Jensen, & Kjærulff, 2000). It can be

difficult, as many filters should be applied to get reasonable results (Wustner, Joumblatt, Teixeira, &

Chandrashekar, 2012). Sometimes the problems occurring can be rather difficult to track, as the real

problems can be different from those originally discovered.

Creating troubleshooters can be difficult, but systematically organizing the problems that need to be solved

can make it a lot easier. The presence of the course personnel in labs can be one possibility for answering

the question about the next problem that can be encountered by a student (Vihavainen et al., 2012). In case

of MOOCs, creating systematic decision trees for troubleshooters can be done by analyzing past help

requests for the tasks and categorizing the questions in a way that supports the development of hints and

examples to guide learners to answers to frequently asked questions.

Categorizing the Problems in Solving Programming Tasks

This paper addresses the system of help for typical problems of novice programmers. As many questions

arise during the programming MOOCs, starting from questions about registration and ending with

understanding specific nuances of certain aspects, this article is limited to the frequently asked questions

that have been asked by the participants in an introductory programming MOOC. It can be much more

difficult to help with the problems in more complex courses, including aspects such as inheritance, objects,

class, encapsulation, methods, message passing, polymorphism, and abstraction (Sanders & Thomas,

2007).

Many questions can be about error messages. The Center for Computing Education and Diversity at the

University of California has identified 17 categories of errors that can occur in Python programming

(Marceau, Fisler, & Krishnamurthi, 2011), but when looking at one task, few of them usually occur and users

are often accustomed to that when trying to resolve a mistake in the code. Error messages are only a part of

the problems that can occur and code can often be wrong even when executed with no errors. This could be

the case, for example, when trying to understand the changes that need to be made in the code to produce

different outputs for certain inputs.

Garner, Haden, and Robins (2005) have organized introductory programming courses and investigated the

mistakes novice programmers make during the practice sessions. They noticed that the more assistance

weaker participants receive the better is their achievement in the course. Garner and colleagues described

27 problems that can appear in the practice sessions of a programming course for beginners. As our courses

were online courses, we had to use helpdesk letters instead of direct feedback from practice sessions.

The problems occurring can be different in various situations. In pair-programming, the pairs would later

be able to solve more low-level syntax problems individually than in solo-programming (Hanks, 2008). As

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

60

in our courses the assignments are individual, we needed a system to help more with the low-level syntax

problems.

As the problems appear during the process of solving certain tasks, our idea was to cultivate from that and

to look at the problems coming out from the MOOC tasks via the helpdesk. Although in our case many of

the problems (like errors and input-output faults) are solvable with the help of the automatic assessment

tool, that assessment tool can create extra problems and questions that need to be solved.

Research Problem

The purpose of this study was to develop and evaluate troubleshooters for the programming tasks to provide

additional support to MOOC participants and reduce the number of learner emails with questions to

organizers while maintaining a high completion rate. Figure 1 presents the research problem.

The research questions were:

1. Can troubleshooters facilitate the work of MOOC organizers?

2. How do participants perceive troubleshooters as an additional support tool?

Figure 1. The research problem.

Murelahendaja Environment for Troubleshooters

Based on previous studies (Garner et al., 2005; Vihavainen et al., 2012), our troubleshooter creation

process, which was rather difficult and time consuming, includes:

1. Analyzing the questions asked via the helpdesk about the weekly programming tasks;

2. Categorizing the questions asked by creating a table of types of typical questions;

3. Creating a tree-structured hint system with examples called troubleshooters to help with questions

that have been asked.

Analysis of Questions and Categorization of Occurring Problems

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

61

This paper deals with an introductory programming MOOC About Programming in Estonia for adults that

has been organized several times since December 2014. The Institute of Computer Science also organizes a

MOOC named Introduction to Programming, which will only be touched upon briefly in this article.

A helpdesk was organized in our MOOCs to help participants with their problems and to get an overview of

the questions asked about the tasks. After collecting the questions that were asked from the helpdesk in

2015, a table of data was compiled to categorize the problems that occurred in certain aspects of the tasks.

This paper focuses on troubleshooters created for the course in 2016 to help with these problems with the

programming tasks.

As our idea was to create helpful hints for the tasks of each week, it meant that each task needed to be looked

at separately. The course About Programming had eight different parts in 4 weeks (2 parts per week):

introduction (algorithm and program, part I), variables and data types (II), conditionals (III), strings (IV),

loops (V), regular expressions (VI), functions (VII), and conclusion (part VIII). Tasks were provided only

for parts II to VII. The organizers received a total of 1,250 letters with questions from 1,534 participants in

the MOOC of 2015. Some letters were related to organizational issues. The statistics for parts II to VII show

that most of the questions were asked about the task of part VII (see Figure 2).

Figure 2. Number of questions asked per task from the helpdesk.

A description and a manual were created to help allocate the problems asked from the helpdesk into the

categories. Letters were broken down into separate questions, each representing one problem. Questions

from one letter could belong to a number of different categories. Three experts were used to evaluate 10%

of the total number of problems asked from the helpdesk randomly to see if the descriptions of the

categories were understood similarly. The overlap in the categorization of the problems was 80%. Most of

the differences were caused by the fact that some of the questions asked from the helpdesk can lead to

several problems and the letters from the participants were not that clear.

The questions were categorized based on existing classifications (Garner et al., 2005) and judgements of

the course organizers. In total, 30 categories of occurring problems were discovered for the MOOC of 2015.

Ten categories were related to organizational problems with registration to the course and the software used

during the course. Twenty categories were related to programming tasks with the following keywords:

input, datatype, variable, syntax and whitespaces, output, round, loops and conditionals, choosing symbols,

using default functions, wrong order of input, calculations, iteration, finding the sum, sum vs counter,

wrong regular expression, missing regular expression, module import, argument of the function, calling a

function, and creating a file.

Initially, the questions were analyzed and categorized by weekly tasks. As different tasks can have similar

problems, some of the categories were included in several tasks. Five to nine categories were identified per

31
89 55

166
104

343

0

200

400

II III IV V VI VII

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

62

task. The categories were rather specific to the tasks to give the best help for the questions asked. The

categories provided the basis for creating a troubleshooter for the particular task. Our weekly tasks and

topics are mostly typical for introductory programming courses, which means that the occurring problems

are also rather typical, but can also depend on the text of the particular weekly task (for example, finding

the sum).

An example of the problems occurring in weekly task VII can be seen in Table 1. For this task, the aspects

listed in the table need extra help from the organizers so that the troubleshooter could give hints and

examples to help with those problems. As the topic of the seventh part is functions, mostly questions about

using functions were asked (calling a function and argument of the function), but other categories are

closely related to that topic and the task too. Several registered problems were also related to the contents

of previous parts of the course (for example, variable).

Table 1

Categories of Occurring Problems for Task VII

Keywords of the category Number of times occurred

Variable 74

Calling a function 64

Round 51

Argument of the function 38

Datatype 31

Input 31

Syntax and whitespaces 23

Calculations 19

Troubleshooters

After the categorization of the problems with programming tasks was complete, the environment called

Murelahendaja was created to offer decision-tree-structured hints and examples called troubleshooters

(see Figure 3). Along the way of creating the troubleshooters, the environment was further developed. The

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

63

functionalities of looking at the tree of troubleshooter and getting a statistical overview of the usage of

troubleshooters were added during the development process.

Figure 3. An example of a troubleshooter question.

The Murelahendaja environment has two separate views: i) one for registered users to create

troubleshooters and view the statistics of usage, and ii) second for course participants (guests) to use

troubleshooters.

Registered users can create troubleshooters by adding linked pages with questions about the problems of

the tasks and helpful hints with code examples to help solve the problem. Pages are linked together in a

decision tree structure and an overview of the linked pages can be seen on one screen (see Figure 4).

Figure 4. Overview of created troubleshooter pages.

Registered users can see descriptive statistics about the use of each page of the troubleshooters (see Figure

5). Statistics show on a tree graph how many times a troubleshooter has been viewed (letter “v”) and how

many times people have indicated that the hints and code examples were helpful by clicking “It worked!”

(letter “s”). Figure 5 shows that the first step of the troubleshooter always includes an introduction to the

troubleshooter. The second step asks from the user if the respective function is used by the user in the

solution. There are two branches after that question – button “No, how do you do that?” leads to the page

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

64

explaining the usage of the function in the program and button “Yes” leads to asking the next question about

the next trouble.

Figure 5. Tree graph with the statistics of a troubleshooter.

Guests, who are in our case the participants of the course, can see the troubleshooter as a series of questions

asked one-by-one to lead to the problematic part of the task. Each question has a button to display hints

and example code to solve the problem, which means that most of the questions have two buttons with the

following texts to choose from (see Figure 3):

1. Button with the text “No, how do you do that?” – leads to the page with hints and examples to find

an answer to the question (see Figure 6). That page has one button to go back to the question page

and another button with the text “It worked!” which indicates that the clues and examples helped

to solve the problem.

2. Button “Yes, but the code still does not work.” – leads to the next question.

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

65

Figure 6. Hints and example codes for solving the problem.

Troubleshooters created in the Murelahendaja environment can be used in various situations in different

courses (not necessarily in programming courses). For example, programming MOOCs use troubleshooters

also for problems with registering to the course (see Figure 7).

Figure 7. Example of troubleshooter.

Every programming task was supported with a troubleshooter and a troubleshooter was created for each

weekly task of the course. During the process of creation and usage of troubleshooters, the environment

was tested and supplemented so that it would contain all the questions asked from the helpdesk in a sensible

way. Troubleshooters never give a direct answer to the questions, but help with hints and examples.

As it can be difficult to navigate in a large system of hints, the troubleshooters for tasks were kept as linear

as possible (Figure 8). Troubleshooters for the course About Programming contain 5-9 questions with 5-9

examples. Creating troubleshooters requires rather specific knowledge and experience, to identify the type

of task and questions that could be helpful, and for this reason most of the troubleshooters were created by

one or two persons. That guarantees that the style of troubleshooters is uniform throughout the course. The

creation process takes a lot of time and energy, which means that the troubleshooters were not drastically

changed for the next courses.

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

66

Figure 8. Structure of troubleshooter for programming task.

The technologies used for creating the web application Murelahendaja included CSS, HTML, JavaScript,

AngularJS, D3.js, and MongoDB. The requirements for Murelahendaja included a web application that

works in all popular web browsers and has an interface in Estonian language. The system had to be able to

handle at least 1,000 guests at a time and have a response time of 0.5 seconds with the maximum response

time of 2 seconds. It had to be available at least 99% of the time; critical errors had to be fixed in an hour.

The Murelahendaja environment and user registration form can be found at progtugi.cs.ut.ee.

Potential Advantages of Troubleshooters for Online Courses

The troubleshooters may have the potential to be an additional supportive self-assessment tool in MOOCs.

First, participants can use troubleshooters when they are stuck before writing to helpdesk (see Figure 9),

thereby reducing the number of letters to organizers. Second, troubleshooters as part of MOOC content can

have a positive effect on MOOC completion rate. In addition, troubleshooters with hints and examples can

provide additional learning material and stimulate further thinking as participants study them.

Furthermore, troubleshooters can be used not only in MOOCs but in traditional courses as well.

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

67

Figure 9. The role of troubleshooter in solution process.

Evaluation of Troubleshooters

The Murelahendaja environment for troubleshooters was evaluated to examine the effectiveness of

troubleshooters in a programming course.

Research Methods

Participants and context. In autumn 2015, programming MOOC About Programming was held

for the third time with 1,534 participants, and 1,010 (66%) of them successfully finished the course. In

spring 2016, programming MOOC About Programming was held for the fourth time with 1,430

participants, and 885 (62%) of them successfully finished the course. The course in 2015 used a helpdesk,

but no troubleshooters, which were added in 2016 (Lepp et al., 2017a). We are improving our courses

gradually with new technical tools. For example, Muuli et al. (2017) describe a novel form of automated

feedback. The troubleshooters were created on the basis of this MOOC and the number of questions to

helpdesk was used for answering the first research question.

We collected feedback data about troubleshooters from 792 participants (89.5% of completing learners),

who completed the course in the spring of 2016. From the participants 342 (43.2%) were male and 450

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

68

(56.8%) female, and 790 (99.7%) were from Estonia. The average age of the participants was 35.8 years

(SD=10.9) ranging from 12 to 81.

Instruments and procedure. Data is gathered from the learning analytics integrated into the

troubleshooters’ environment, letters from the participants, questionnaires, and Moodle’s learning

analytics.

In the beginning of the courses, questionnaires were sent to get some background information about the

participants and their attitude toward certain aspects, including mathematics and programming. At the end

of the course, another survey was conducted to ask opinions about the course, for example, the usage and

helpfulness of troubleshooters, the evaluation on the difficulty of last exercises, and the last weekly quiz.

Both questionnaires were online questionnaires. The answering on these questionnaires was voluntary and

passing the MOOC did not depend on that.

The Moodle learning analytics of each participant, indicating the attempts to submit tasks and the points

for tasks, was matched to the answers from the questionnaire and to the background data from the pre-

questionnaire.

Data analysis. Statistical analyses were carried out as follows. First, the learning analytics

integrated into the troubleshooters’ environment was studied. Next, descriptive statistics on the

participants’ opinion on using troubleshooters was investigated. Then Spearman correlation coefficients

were calculated to investigate the relationship between participants’ evaluations on various statements and

their evaluations on the usage of troubleshooters. The helpfulness of troubleshooters for learners was also

investigated using the Spearman correlation coefficient. The analyses were carried out using the statistical

package SPSS version 23.0.

Results

When looking at the statistics, the total number of people clicking the button “It worked!” was 2,180 (see

Figure 10). This chart shows that troubleshooters provided the most help for weekly tasks III and V. Data

from the helpdesk questions from the previous course showed that the same weekly tasks prompted many

questions, too. The biggest difference is that weekly task VII did not get that much help from

troubleshooters as expected, but the reason could be that people had received help for many aspects from

the previous troubleshooters or just did not click “It worked!” as the course was ending.

Figure 10. Number of people getting an answer from troubleshooter per weekly task.

318

551

163

615

298 235

0

500

1000

II III IV V VI VII

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

69

As troubleshooters were used in the fourth instance of the course About Programming, the number of

letters received by the helpdesk can be compared with the previous time the course was conducted. Previous

time (without troubleshooters), the helpdesk received 1,250 letters from 1,534 participants, but after adding

troubleshooters to the course, 750 letters were received from the 1,430 participants. There were no other

major changes in the course, which means that the percentage of questions per participator declined 29%.

The MOOC About Programming concluded with a feedback form, which included questions about

troubleshooters. The total number of people answered the final questionnaire was 792 and 635 of them had

used troubleshooters. As troubleshooters were not compulsory, the results indicate that 16.6% of the

participants did not look at troubleshooters at all (see Figure 11).

Figure 11. Looked at troubleshooters.

When the users (n=635) were asked about the helpfulness of troubleshooters, 40.8% of the participants

claimed troubleshooters to be very helpful (see Figure 12) and 3.5% of the participants did not find

troubleshooters helpful at all.

Figure 12. Got help from troubleshooters.

One of the questions included ordering the various parts of the course (videos, reading materials, extra

materials, stories, tasks, forum, test, troubleshooters, and other materials) by their position in the solving

process when they were used. According to the final questionnaire, 19.8% of the participants did not use

troubleshooters at all and 7% looked at troubleshooter as the last thing in the process of solving the tasks

(see Figure 13). For the rest of the users, troubleshooters were located at various places in the order of

resources. For example, some participants used troubleshooters even before solving the weekly tasks, which

means that troubleshooters have changed the way course participants learn.

16.6%
11.1% 7.7% 8.8% 12.6%

14.9%
28.2%

0%

20%

40%

1 (disagree) 3 5 7 (agree)

3.5% 3.9%
6.1% 12.6% 15.0% 18.1%

40.8%

0%

20%

40%

60%

1 (disagree) 3 5 7 (agree)

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

70

Figure 13. Place of troubleshooters in the order of solving.

Using troubleshooters correlated with various aspects of the course (see Table 2; Lepp et al., 2017b). In the

beginning of the course, the participants had to answer on the Likert scale of 7, how much they felt that

mathematics and programming were for them. The results show that the more participants feel like

mathematics is for them, the less they use troubleshooters. With programming, it is the other way around.

Furthermore, the participants, who found the weekly tasks and tests harder, used more troubleshooters.

The users, who made more attempts to submit weekly tasks and tests and were deducted points for that,

used troubleshooters more. This could indicate that the people falling behind do use the opportunity to use

troubleshooters more.

Table 2

Spearman Correlation Coefficients Between Participants Evaluations on Various Statements and Their

Evaluations on the Usage of Troubleshooters

Statement Evaluations

Evaluation that mathematics is something for me -0.128

Evaluation on programming pleasantness 0.261

Evaluation on the difficulty of last exercises 0.348

Evaluation on the difficulty of the last week’s quiz 0.174

Number of attempts to submit solutions of exercises 0.300

Number of attempts to submit weekly quiz (at least 90% right solutions) 0.146

Sum of points of weekly quizzes -0.223

*Note. All coefficients are statistically significant on .01 level.

Discussion and Conclusions

19.8%

0.8%1.8%3.5%

8.0% 12.0%

18.7% 18.1%

10.4%
7.0%

0%

10%

20%

30%

0 1 2 3 4 5 6 7 8 9

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

71

Creating troubleshooters for course tasks has been useful, as the number of questions asked from the

helpdesk declined 29%. In total, 86.5% of the users of troubleshooters have given at least 4 points from 7,

showing agreement with the statement that troubleshooters were helpful. It is obvious that not all

participants need troubleshooters, but troubleshooters as one possibility to replace a helpdesk could

influence the attitude towards the MOOC (Warren et al., 2014) and could be one reason why in our MOOC

the dropout rate was lower than in most MOOCs (Jordan, 2014; Siemens, 2013). As a result of the success

of troubleshooters, they were also implemented in a MOOC, called Introduction to Programming, and will

be used in the future.

This paper does not describe didactically how much troubleshooters can actually help in certain situations.

The course About Programming uses only shorter basic tasks to evaluate certain aspects of the topics and

the tasks have mostly one solution; however, the construction of troubleshooters can become very long and

difficult in bigger tasks and algorithms. Tasks like finding suitable algorithmic solutions can form several

branches, which make the troubleshooter’s decision tree difficult to navigate. How much one can help with

hints, when there are several different solutions, has not been looked at in this case. Pieterse (2013) stated

that providing high quality automatic assessment can be very challenging and demands increased effort

from the instructor. We think that the same applies to troubleshooters; however, crafting troubleshooters

can be rewarding to the instructors as there is much to learn about learners’ mistakes and problems

(Vihavainen et al., 2012).

While the number of questions asked from the helpdesk has declined, many of the questions asked from

the helpdesk duplicate the questions solved by troubleshooters. It still remains unknown why that occurs.

There is a future course coming up without the helpdesk, which may lead to more answers.

Finally, troubleshooters change the way people study as, for example, many learners look at troubleshooters

even before they encounter any problems, solve the tasks, or even before reading the theoretical materials

about the topic. As has been suggested in a previous study (Anderson, Huttenlocher, Kleinberg, & Leskovec,

2014), learners differ in the ways they engage with online courses. Some participants acquire the required

knowledge without needing troubleshooters, while other participants (called “solvers” by Anderson’s et al.,

2014) focus on solving exercises, using troubleshooters if they encounter problems. The survey revealed

that 19.8% of the participants did not use troubleshooters at all and the results indicate that the participants,

who received more points and felt that the weekly tasks were easier, were not very active in using

troubleshooters, which could imply that troubleshooters are more helpful to people in need for extra

assistance. In our case this tool was created for learning as was suggested by Admiraal et al. (2015) and

therefore could be helpful for learners.

A danger is that troubleshooters can become an essential part of the study process, which can lead to learned

helplessness, where some of the students are addicted to troubleshooters without even experiencing any

problems. Will the students learn to swim when they have been thrown a swim ring?

As troubleshooters help to understand the content of the task, they can reduce the students’ ability to read

and understand the text of the task by themselves. Understanding the problem without external assistance,

being able to solve a problem without hints, and debugging it by finding the solutions yourself are important

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

72

parts of programming too. Similar concerns were also highlighted in a previous study (Vihavainen et al.,

2012).

Creating troubleshooters requires special kind of experience and is not that easy. In MOOCs, each new task

has to i) use mostly the knowledge taught before, ii) have an automated assessment feedback, and iii) have

a troubleshooter with hints for the questions that may occur. All this limits the creation and changing of

tasks because too many changes would have to be made. Development of the Murelahendaja environment

continues in further courses.

Acknowledgments

We would like to thank all of the participants and organizers of the MOOC for their co-operation. Also, the

support of the University of Tartu for the development of the MOOC, data collection, and writing of the

paper has been considerable.

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

73

References

Admiraal, W., Huisman, B., & Pilli, O. (2015). Assessment in massive open online courses. Electronic

Journal of e-Learning, 13(4), 207-216.

Anderson, A., Huttenlocher, D., Kleinberg, J., & Leskovec. J. (2014). Engaging with massive online

courses. In Proceedings of the 23rd International Conference on World Wide Web (WWW '14),

687-698. ACM, New York, NY, USA. doi:10.1145/2566486.2568042

Baturay, M. H. (2015). An overview of the world of MOOCs. Procedia - Social and Behavioral Sciences,

174, 427-433. doi:10.1016/j.sbspro.2015.01.685

Downes, S. (2017). New models of open and distributed learning. In M. Jemni, Kinshuk, & M. Khribi

(Eds.), Lecture notes in educational technology. Open education: from OERs to MOOCs (pp. 1-

22). Berlin, Germany: Springer-Verlag. doi:10.1007/978-3-662-52925-6_1

Ebben, M., & Murphy, J. S. (2014). Unpacking MOOC scholarly discourse: A review of nascent MOOC

scholarship. Learning, Media and Technology, 39(3), 328-345.

doi:10.1080/17439884.2013.878352

Garner, S., Haden, P., & Robins, A. (2005). My program is correct but it doesn't run: A preliminary

investigation of novice programmers' problems. In Proceedings of the 7th Australasian

Conference on Computing Education, 173-180. Retrieved from

http://crpit.scem.westernsydney.edu.au/confpapers/CRPITV42Garner.pdf

Greene, J. A., Oswald, C. A., & Pomerantz, J. (2015). Predictors of retention and achievement in a massive

open online course. American Educational Research Journal, 52(5), 925-955.

doi:10.3102/0002831215584621

Hanks, B. (2008). Problems encountered by novice pair programmers. Journal on Educational Resources

in Computing, 7(4). doi:1316450.1316452

Hew, K. F., & Cheung, W. S. (2014). Students’ and instructors’ use of massive open online courses

(MOOCs): Motivations and challenges. Educational Research Review, 12, 45–58.

Hone, K. S., & El Said, G. R. (2016). Exploring the factors affecting MOOC retention: A survey study.

Computers & Education, 98, 157-168. doi:10.1016/j.compedu.2016.03.016

Jordan, K. (2014). Initial trends in enrolment and completion of massive open online courses. The

International Review of Research in Open and Distributed Learning, 15(1).

doi:10.19173/irrodl.v15i1.1651

Lepp, M., Luik, P., Palts, T., Papli, K., Suviste, R., Säde, M., & Tõnisson, E. (2017a). MOOC in

programming: A success story. In Proceedings of the International Conference on e-Learning

(ICEL), 138-147. Academic Publishing International, USA.

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

74

Lepp, M., Luik, P., Palts, T., Papli, K., Suviste, R., Säde, M., Hollo, K., Vaherpuu, V., & Tõnisson, E.

(2017b). Self- and automated assessment in programming MOOCs. In D. Joosten-ten Brinke, &

M. Laanpere (Eds.), Communications in computer and information science: Vol. 653.

Technology enhanced assessment (pp. 72-85). Cham, Switzerland: Springer International

Publishing AG. doi:10.1007/978-3-319-57744-9_7

Marceau, G., Fisler, K., & Krishnamurthi, S. (2011). Measuring the effectiveness of error messages

designed for novice programmers. In Proceedings of the 42nd ACM Technical Symposium on

Computer Science Education (SIGCSE '11), 499-504. ACM, New York, NY, USA.

doi:10.1145/1953163.1953308

McRitchie, K. J. (2009). Technology consultants: A successful generation of student staff. In Proceedings

of the 37th Annual ACM SIGUCCS Fall Conference: Communication and Collaboration

(SIGUCCS '09), 287-292. ACM, New York, NY, USA. doi:10.1145/1629501.1629555

Motsuk, K. (1999). The student helpdesk: student information technology support at Georgetown

University. In Proceedings of the 27th Annual ACM SIGUCCS Conference on User Services: Mile

High Expectations (SIGUCCS '99), 172-175. ACM, New York, NY, USA.

doi:10.1145/337043.337135

Muuli, E., Papli, K., Tõnisson, E., Lepp, M., Palts, T., Suviste, R., Säde, M., & Luik, P. (2017). Automatic

assessment of programming assignments using image recognition. In É. Lavoué, H. Drachsler, K.

Verbert, J. Broisin, & M. Pérez-Sanagustín (Eds.), Lecture notes in computer science: Vol. 10474.

Data driven approaches in digital education (pp. 153-163). Cham, Switzerland: Springer

International Publishing AG. doi:10.1007/978-3-319-66610-5_12

Onah, D. F. O., Sinclair, J. E., & Boyatt, R. (2014). Exploring the use of MOOC discussion forums. In

Proceedings of London International Conference on Education, 1-4.

doi:10.13140/RG.2.1.3319.5042

Papathoma, T., Blake, C., Clow, D., & Scanlon, E. (2015). Investigating learners’ views of assessment types

in massive open online courses (MOOCs). In G. Conole, T. Klobučar, C. Rensing, J. Konert, & E.

Lavoué (Eds.), Lecture notes in computer science: Vol. 9307. Design for teaching and learning in

a networked world (pp. 617-621). Cham, Switzerland: Springer International Publishing AG.

doi:10.1007/978-3-319-24258-3_72

Pieterse, V. (2013). Automated assessment of programming assignments. In Proceedings of the 3rd

Computer Science Education Research Conference on Computer Science Education Research

(CSERC '13), 45-56. Open Universiteit, Heerlen, The Netherlands. Retrieved from

http://dl.acm.org/citation.cfm?id=2541917.2541921

Sanders, K., & Thomas, L. (2007). Checklists for grading object-oriented CS1 programs: Concepts and

misconceptions. SIGCSE Bull, 39(3), 166-170. doi:10.1145/1269900.1268834

Troubleshooters for Tasks of Introductory Programming MOOCs
Lepp, Palts, Luik, Papli, Suviste, Säde, Hollo, Vaherpuu, and Tõnisson

75

Siemens, G. (2013). Massive open online courses: Innovation in education. Open educational Resources:

Innovation, Research and Practice, 5. Retrieved from

https://oerknowledgecloud.org/sites/oerknowledgecloud.org/files/pub_PS_OER-

IRP_web.pdf#page=31

Sinnett, C. J., & Barr, T. (2004). OSU helpdesk: A cost-effective helpdesk solution for everyone. In

Proceedings of the 32nd annual ACM SIGUCCS conference on User services (SIGUCCS '04),

209-216. ACM, New York, NY, USA. doi:10.1145/1027802.1027851

Skaanning C., Jensen F.V., & Kjærulff U. (2000). Printer troubleshooting using bayesian networks. In R.

Logananthara, G. Palm, & M. Ali (Eds.), Lecture notes in computer science: Vol. 1821. Intelligent

problem solving. Methodologies and approaches (pp. 367-380). Berlin, Germany: Springer-

Verlag. doi:10.1007/3-540-45049-1_45

Suen, H. K. (2014). Peer assessment for massive open online courses (MOOCs). The International Review

of Research in Open and Distance Learning, 15(3), 313-327. doi:10.19173/irrodl.v15i3.1680

Veletsianos, G., & Shepherdson, P. (2016). A systematic analysis and synthesis of the empirical mooc

literature published in 2013–2015. International Review of Research in Open and Distributed

Learning, 17(2). doi:10.19173/irrodl.v17i2.2448

Vihavainen, A., Luukkainen, M., & Kurhila, J. (2012). Multi-faceted support for MOOC in programming.

In Proceedings of the 13th Annual Conference on Information Technology Education, 171-176.

ACM. doi:10.1145/2380552.2380603

Warren, J., Rixner, S., Greiner, J., & Wong, S. (2014). Facilitating human interaction in an online

programming course. In: Proceedings of the 45th ACM Technical Symposium on Computer

Science Education (SIGCSE '14), 665-670. ACM, New York, NY, USA.

doi:10.1145/2538862.2538893

Washburn, K., & El-Bayoumi, J. (2003). UNB's single site service source. In Proceedings of the 31st

Annual ACM SIGUCCS Fall Conference (SIGUCCS '03), 237-239.

doi:http://dx.doi.org/10.1145/947469.947532

Wustner, S., Joumblatt, D., Teixeira, R., & Chandrashekar, J. (2012). Automated home network

troubleshooting with device collaboration. In Proceedings of the 2012 ACM Conference on

CoNEXT Student Workshop (CoNEXT Student '12), 61-62. ACM, New York, NY, USA.

doi:10.1145/2413247.2413284

