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SUMMARY
The Geological Survey of  Canada,
under the Remote Predictive Mapping
project of  the Geo-mapping for Ener-
gy and Minerals program, Natural

Resources Canada, has the mandate to
produce up-to-date geoscience maps of
Canada’s territory north of  latitude
60°. Over the past three decades, the
increased availability of  space-borne
sensors imaging the Earth’s surface
using increasingly higher spatial and
spectral resolutions has allowed geo-
logic remote sensing to evolve from
being primarily a qualitative discipline
to a quantitative discipline based on
the computer analysis of  digital images.

Classification of  remotely
sensed data is a well-known and com-
mon image processing application that
has been used since the early 1970s,
concomitant with the launch of  the
first Landsat (ERTS) earth observa-
tional satellite. In this study, supervised
classification is employed using a new
algorithm known as the Robust Classi-
fication Method (RCM), as well as a
Random Forest (RF) classifier, to a
variety of  remotely sensed data includ-
ing Landsat-7, Landsat-8, Spot-5, Aster
and airborne magnetic imagery, pro-
ducing predictions (classifications) of
bedrock lithology and Quaternary
cover in central Victoria Island, North-
west Territories. The different data
types are compared and contrasted to
evaluate how well they classify various
lithotypes and surficial materials; these
evaluations are validated by confusion
analysis (confusion matrices) as well as
by comparing the generalized classifi-
cations with the newly produced geolo-
gy map of  the study area. In addition,
three new Multiple Classification Sys-
tem (MCS) methods are proposed that
leverage the best characteristics of  all
remotely sensed data used for classifi-
cation.

Both RCM (using the maxi-
mum likelihood classification algo-
rithm, or MLC) and RF provide good
classification results; however, RF pro-
vides the highest classification accuracy
because it uses all 43 of  the raw and
derived bands from all remotely sensed
data. The MCS classifications, based on
the generalized training dataset, show
the best agreement with the new geol-
ogy map for the study area.

SOMMAIRE
Dans le cadre de son projet de Télécar-
tographie prédictive du Programme de
géocartographie de l’énergie et des
minéraux de Ressources naturelles
Canada, la Commission géologique du
Canada a le mandat de produire des
cartes géoscientifiques à jour du terri-
toire du Canada au nord de la latitude
60°. Au cours des trois dernières
décennies, le nombre croissant des
détecteurs aérospatiaux aux résolutions
spatiales et spectrales de plus en plus
élevées a fait passer la télédétection
géologique d’une discipline principale-
ment qualitative à une discipline quan-
titative basée sur l'analyse informatique
d’images numériques.

La classification des données
de télédétection est une application
commune et bien connue de traitement
d'image qui est utilisée depuis le début
des années 1970, parallèlement au
lancement de Landsat (ERST) le pre-
mier satellite d'observation de la Terre.
Dans le cas présent, nous avons
employé une méthode de classification
dirigée en ayant recours à un nouvel
algorithme appelé Méthode de classifi-
cation robuste (MRC), ainsi qu’au clas-
sificateur Random Forest (RF),
appliqués à une variété de données de
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télédétection dont celles de Landsat-7,
Landsat-8, Spot-5, Aster et d’imagerie
magnétique aéroportée, pour produire
des classifications prédictives de la
lithologie du substratum rocheux et de
la couverture Quaternaire du centre de
l'île Victoria, dans les Territoires du
Nord-Ouest. Les différents types de
données sont comparés et contrastés
pour évaluer dans quelle mesure ils
classent les divers lithotypes et matéri-
aux de surface; ces évaluations sont
validés par analyse de matrices de con-
fusion et par comparaison des classifi-
cations généralisées des nouvelles
cartes géologiques de la zone d'étude.
En outre, trois nouvelles  méthodes
par système de classification multiple
(MCS) sont proposées qui permettent
d’exploiter les meilleures caractéris-
tiques de toutes les données de télédé-
tection utilisées pour la classification.

Tant la méthode MRC (util-
isant l'algorithme de classification de
vraisemblance maximale ou MLC que
la méthode RF donne de bons résultats
de classification; toutefois c’est la
méthode RF qui offre la précision de
classification la plus élevée car elle
utilise toutes les 43 les bandes de don-
nées brutes et dérivées de toutes les
données de télédétection. Les classifi-
cations MCS, basées sur le jeu de don-
nées généralisées d’apprentissage, mon-
trent le meilleur accord avec la nouvelle
carte géologique de la zone d'étude.

INTRODUCTION
Over the past three decades, the
increased availability of  space-borne
sensors imaging the Earth’s surface
using increasingly higher spatial and
spectral resolutions has allowed geo-
logic remote sensing to evolve from
being primarily a qualitative discipline
to a quantitative discipline based on
the computer analysis of  digital images.
Many image processing and analytical
techniques have been developed to aid
the interpretation and extraction of
useful geologic information from
remotely sensed imagery. Image classi-
fication is perhaps the best known and
the most widely used digital image
analysis technique since the advent of
the ERTS-1 (Landsat) series of  satel-
lites in the early 1970s. 

The Geological Survey of
Canada, under the Remote Predictive
Mapping (RPM) project (Desnoyers

and Harris 2003; Schetselaar et al.
2007; Harris 2008; Harris et al. 2008a),
part of  the Geo-mapping for Energy
and Minerals (GEM) program of  Nat-
ural Resources Canada, has the man-
date to produce up-to-date geoscience
maps of  Canada’s territory north of
latitude 60°. The expansive territory to
be mapped, in combination with the
required resources and cost of  setting
up field mapping campaigns, requires
new approaches to providing geologi-
cal information. Remote Predictive
Mapping (RPM), which emphasizes the
use of  various types of  satellite and
geophysical imagery to assist in pro-
ducing geological maps, in part
addresses this requirement (Harris
2008, and papers therein). Producing
the required geological information can
be undertaken by visual interpretation
of  enhanced imagery, by employing
machine learning algorithms to assist in
extracting information, or by a combi-
nation of  the two methods (Schetselaar
et al. 2007; Harris et al. 2008a, 2012a).
Predictive mapping is obviously not a
replacement for field work; however,
the intelligent use of  remotely sensed,
geophysical and geochemical data in
concert with legacy geological data
(maps, databases) can produce maps
that focus field work on areas that have
more complex signatures (Harris
2008). Furthermore, RPM also pro-
vides first-order geologic predictive
maps in poorly mapped areas or areas
where field work is not possible.

The use of  machine learning
algorithms, primarily classification, for
mapping rocks has been applied mostly
in arid environments (Rowan et al.
1987; Macias 1995; Glikson and
Creasey 1995; El Rakaiby 1995; Van de
Meer et al. 1995; Rowan et al. 2005;
Kavak 2005; Peña and Abdelsalam
2006; Saadi and Watanabe 2009; Rajen-
dran et al. 2012). A number of  exam-
ples can also be found for Arctic envi-
ronments (Leverington 2001, 2010;
Lorenz 2004; Harris et al. 2005, 2008a,
c, 2009, 2010; Wickert et al. 2008;
Schetselaar and Ryan 2008; Levering-
ton and Moon 2012; Behnia et al.
2012). Even though Arctic environ-
ments are not covered by trees, ubiqui-
tous lichen and snow cover and a short
season for acquisition of  suitable
imagery can make the application of
machine learning algorithms for geo-

logical mapping a challenge. However,
the studies listed above for northern
environments do indicate that the clas-
sification of  various remotely sensed
data, including geophysical data, can
make a useful contribution to mapping
activities. Copious public domain
remotely sensed data (www.geobase.ca)
are freely available and can be applied
to operational mapping programs such
as RPM using both visual interpreta-
tion and machine learning methods.
The application of  machine learning
algorithms offers the advantages of
objectivity, speed and the ability to
cover large areas efficiently and within
short time frames. However, expert
knowledge is paramount to the success
of  machine learning algorithms, as
training data are required for the geo-
logical features to be successfully clas-
sified.

Classification algorithms can
be broadly divided into two categories
– unsupervised and supervised. Unsu-
pervised algorithms require very little
user input and are designed to find like
classes (or clusters) within an n-dimen-
sional data (feature) space, whereas
supervised classification requires much
more user input to train and guide the
classification process.  Supervised clas-
sification is based on a priori knowledge
of  the features to be classified. The
spectral signature of  representative
samples of  the different surface cover
types (information classes), referred to
as training areas, are used to train the
classifier and, by using a  classification
algorithm, to recognize spectrally simi-
lar areas for each class on an image
dataset.

In this study, supervised classi-
fication using a new algorithm known
as the Robust Classification Method
(Harris et al. 2012b) is applied to a
variety of  remotely sensed data, includ-
ing Landat-7, Landsat-8, Spot-5, Aster
and airborne magnetic imagery, pro-
ducing predictions (classifications) of
bedrock lithology and Quaternary
cover in central Victoria Island, North-
west Territories. A Random Forest
classifier is also employed to (1) rank
the predictive power of  each input
band, and (2) create a classified map.
Both of  these classifiers are ‘ensemble
classifiers’, as they produce multiple
predictions (classified maps) that are
combined using a voting procedure
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whereby the predominant class, on a
pixel basis, is selected for the final map.
Using confusion analysis (confusion
matrices) and comparing the general-
ized classifications with the newly pro-
duced geology map of  the study area
(Rainbird et al. 2013a, b, c and d),
these different data types are compared
and contrasted to evaluate how well
they classify various lithotypes and sur-
ficial materials. We also introduce three
new multiple classification system
(MCS) maps that compare favourably
to the geology map of  the study area.
ENVI™ image processing software in
concert with ArcGIS™ and the EnMap
Box software package (http://
www.enmap.org/?q=enmapbox) were
used to perform the classifications.

STUDY AREA
The study area lies within the Minto
Inlier on Victoria Island (Fig. 1). The
Minto Inlier, first recognized and
mapped by Thorsteinsson and Tozer

(1962), is a northeast-trending belt of
early Neoproterozoic sedimentary
rocks of  the Shaler Supergroup that
are intruded by gabbro–diorite sills and
dykes and capped by coeval flood
basalt of  the Franklin intrusive (mag-
matic) event. The succession was gen-
tly folded, forming an open syncline
and a smaller anticline, before deposi-
tion of  an unconformably overlying
shallow marine sandstone and carbon-
ate succession of  Cambro–Ordovician
age. The Shaler Supergroup includes,
in ascending stratigraphic order, the
Rae Group, Reynolds Point Group,
Minto Inlet Formation, Wynniatt For-
mation, Kilian Formation and Kuujjua
Formation (Rainbird et al. 1994, 1996;
Fig. 1). With the aid of  recent detailed
field observations, the Wynniatt For-
mation was divided into four litho-
stratigraphic sub-units, namely black
shale, lower carbonate, stromatolitic
carbonate, and upper carbonate mem-
bers (Thomson et al. 2014). Basaltic

rocks of  the Natkusiak Formation are
exposed in the south, and related gab-
bro–diorite sills and dykes (Franklin
Intrusions) were intruded into the sedi-
mentary strata throughout the area.
Recently, new geological maps of  the
study area have been produced using
detailed field observations and visual
interpretation of  Spot-5 stereo imagery
(Rainbird et al. 2013a, b, c and d). A
portion of  these maps is presented in
Figure 2a, which shows the detailed
geology, whereas Figure 2b is a gener-
alized lithological map that will be used
for comparisons with the generalized
lithological and surficial classification
maps produced in this study. Table 1
includes descriptions of  the geology
shown in Figure 2a (detailed lithology
and surficial materials column), as well
as the generalized lithology in Figure
2b (generalized lithology and surficial
materials column).
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Figure 1. Location of  study area in the Minto Inlier of  Victoria Island, Northwest Territories, Canada, and legacy geology map
showing main lithological units (geology from Hubert et al. (2005), modified from Thorsteinsson and Tozer (1962).
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Table 1. Description of  bedrock types and surficial classes (training areas) used for classification of  the Landsat, Spot and Aster
data using Robust Classification Method–maximum likelihood classification (RCM–MLC) and Random Forest (RF). A total of
thirteen lithological – surficial types were classified. These thirteen categories were generalized into seven major lithotypes,
based on the detailed lithology (Figure 2a) for comparison with the new generalized geology map (Figure 2b).

Detailed lithologies and Generalized lithologies
surficial material Description Training area and surficial materials

(Fig. 2a – see legend – (13 spectral units used for (Fig.2b – 7 generalized
symbols listed below) classification) lithological-surficial

classes)

Natkusiak basalt (1) –Nn1 Extends SE-NW in southern Nfb1- (4 polygons – 184 pixels) Basalt
part. Low reflectance in VNIR.
Moderate reflectance in SWIR.

Natkusiak basalt (2) – Nn2 Low reflectance in VNIR and Nfb2 – (4 polygons – 179 pixels)
SWIR.  Distinguishable from
basalt (1) in SWIR bands giving
a layering appearance.

Natkusiak basalt (3) –Nn3 Basalts covered by thin Nfbv – (5 polygons – 87 pixels)
vegetation layer.

Franklin Intusives -= diabase Extends in the central and Nfg –  (9 polygons – 420 pixels) Franklin intrusive rocks
(1) -Nfg northern parts of  the area. Very (diabase)

similar to basalts in VNIR. 
Has slightly higher reflectance
in SWIR-2 compared to basalts.

Franlkin intrusives - diabase Gabbro/diorite covered by thin Nfgv – (4 polygons – 187 pixels)
(2)-Nfg vegetation

Wynniatt Fm. (carbonates) Include all carbonate members Carbonates – (10 polygons -  Carbonates
Nw1, , Nw3, Nw4 of  Wynniatt Fm. 293 pixels)

High reflectance in SWIR, 
moderate in VNIR.

Cambro/Ordovician (carbonates)- Very similar spectral response 
Nk1, Nk2, Nk3,Nk4 with Wynniatt FM. Slightly 

different in SWIR bands.

Paleozoic dolostones- Cmtd, high spectral response with Dolostones – 6 polygons – 82 Dolostones
Cov, Cmst pixels)

Kuujjua Fm.(quartz arenites) – Occur in contact with the basalts. Sandstones – (4 polygons – 178 Sandstones
Njk Nw2, Cmc – clastic unit – Low to moderate reflection in pixels)
mostly covered by vegetation VNIR. Moderate reflectance in

SWIR-1, moderate to high in
SWIR-2.

Evaporite  rocks- Nmi (Minto Includes evaporates of  Minto Evaporites – (8 polygons – 140 Evaporites
Inlet Fm), Nk4 and Killian Fms. Low reflection pixels)

in NIR, slightly higher reflection
in SWIR.

Till 1 -Q Till 1 – (6 polygons- 191 pixels) Quaternary 

Till 2-Q Till 2 – (8 polygons – 156 pixels)

Till 3-Q Till 3 – (8 polygons – 224 pixels)

Dry Veg Dry veg missed by biomass mask Dry veg Not classified
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Table 2. Summary of  remotely sensed data and associated acquisition characteristics.^

Number of Spatial Sun Azimuth/
bands Spectral range resolution Dynamic range Date Elevation (degrees)

LANDSAT-7 3-V 0.450–0.515 µm (B) 30 m (XS) 8 bits 7/14/2002 172.9 / 40.1
1-NIR 0.525–0.605 µm (G) 60 m (TIR)
2-SWIR 0.630–0.690 µm (R) 15m (pan)
2-TIR 0.750–0.900 µm (NIR)
1-pan 1.55–1.75 µm (SWIR)

2.08–2.35 µm (SWIR)
10.40–12.50 µm (TIR)
0.520–0.900 µm (pan)

SPOT-5 2-V 0.500-0.590 µm (G) 10 m (XS) 8 bits 8/22/2009 174.3 / 30.4
1-NIR 0.610–0.680 µm (R) 20m (SWI)
1-SWIR 0.780–0.890 µm (NIR) 2.5m (pan)
1-pan 1.58–1.75 µm (SWIR)

0.480–0.710 µm (pan)

LANDSAT - 8 4-V 0.43-.45 (B) 15 m (pan) 16 bit 7/4/2013 176. 1 / 41.9
1-NIR 0.45 -0.51 (B) 30m (XS)
2-SWIR 0.53 – 0.59 (G) 30m (TIR)
1-TIR 0.64 – 0.67 (R)
1-pan 0.85 – 0.88 (NIR)

1.57 – 1.65 (SWIR)
2.11 – 2.29 (SWIR)
10.6-11.1 (TIR)
11.5 -12.51 (TIR)
0.5 – 0.68 (PAN)

ASTER (two 3 –VNIR 0.52-0.60 (G) VNIR - Bands 1– 9 9/17/2005 South scene – 
mosaicked 15m (VNIR and 181.1 / 20.7
scenes) –       1B 6 –SWIR 0.63-0.69 (R) SWIR – and SWIR - 8 bit) North Scene – 
data (radiometric 30m Bands 10 –14 182..3 / 20.2
and geometric 6-TIR 0.76 – 0.86 (NIR) TIR – 90m (TIR --16 bit)
coefficients
applied – 1.6 – 1.7 (SWIR)
radiance at 2.145 – 2.185 (SWIR)
sensor) 2.185 – 2.225 (SWIR)

2.235 – 2.285 (SWIR)
2.295 – 2.365 (SWIR)
2.360 – 2.430 (SWIR)
8.125 – 8.475 (TIR)
8.475 – 8.825 (TIR)
8.925 – 9.275 (TIR)
10.25 – 10.95 (TIR)
10.95 – 11.65 (TIR)

Airborne 1 channel Total field (magnetic 16 bit 1 km line spacing
Magnetic Data susceptibility) and 60m sample

spacing; gridded
using a minimum
curvature function

^ XS = multispectral, TIR = thermal, NIR = near infrared, SWIR = short-wave infrared, V = visible, um = microns (1* 106m).



DATA AND PROCESSING
The types and descriptions of  remotely
sensed data used for classification pur-
poses are presented in Table 2.  Land-
sat-7 orthorectified images (both
images acquired on 14 July, 2002) were
downloaded from the United States
Geological Survey (USGS) Global
Visualization Viewer (http://glovis.
usgs.gov), and two-level 1A Spot-5
scenes acquired on 22 August, 2009
were purchased from Blackbridge
(http://www.blackbridge.com/). Both
the Landsat-7 and Spot-5 data in 8-bit
format were radiometrically balanced,
mosaicked and then subset to the
extent of  the study area (Fig. 1). The
Landsat-8 data acquired on 4 July, 2013
were downloaded from the USGS in
16-bit format; these data covered the
entire study area. Two Aster scenes
(LEVEL 1B) were purchased from the
USGS; both were acquired on 17 Sep-
tember, 2005 at relatively low sun
angles (Table 2). These were the best
(cloud free) Aster images that could be
sourced for the study area.  However,
the late season acquisition and conse-
quent low sun angle may affect the
classification results in a negative fash-
ion (see Discussion section). The two
images were radiometrically balanced
and mosaicked.

Airborne total field magnetic
data acquired by the Geological Survey
of  Canada (http://gdr.agg.nrcan.gc.ca/
gdrdap/dap/search-eng.php) were also
used to help classify the various rock
types. These data were collected along
north-south flight lines spaced 1 km
apart. Sample spacing was approxi-
mately 60 m along-line and the data
were gridded using a minimum curva-
ture algorithm. The patterns of  tones
depicted on a total field magnetic map
show the strength of  the measured
magnetic field and hence reflect how
magnetic the rocks are. Trends in the
anomalies therefore represent the dis-
tribution of  magnetic minerals and
reflect the geological make-up of  the
area.

All optical imagery was first
corrected for atmospheric effects using
the dark subtraction method (Gupta
1991) and enhanced by contrast
stretching. In addition, the Aster radi-
ance data were corrected for cross-talk,
which is caused by signal leakage from
band 4 into adjacent bands 5 and 9

(Kalinowski and Oliver 2004; Biggar et
al. 2005). All images were visually and
statistically assessed after all correc-
tions were applied to ensure good
quality (radiometrically balanced) data
suitable for digital classification.

To obtain better discrimina-
tion between various lithological fea-
tures, areas covered with water, ice and
vegetation were masked using the
Landsat-7 and Spot-5 imagery. The
Landsat-7 image was used for masking
vegetation as it was acquired in July
when biomass would be most exten-
sive.  The well-known Normalized Dif-
ference Vegetation Index (NDVI) was
used to characterize the vegetation dis-
tribution on the Landsat-7. NDVI,
which has a dynamic range from −1 to
+1 (Chuvieco and Huete 2010), is
defined as:

NDVI = (NIR − RED) /NIR + RED)  (Eq. 1)

where NIR = near infrared band and
RED = red band.

An upper threshold was
defined to separate vegetation from
non-vegetation and was used to mask
all imagery. Applying the Landsat-7
vegetation mask to all data was under-
taken to facilitate an unbiased compari-
son between the different classifica-
tions. The Spot-5 data appeared to
show the most snow and ice, so these
data were used to create a snow and ice
mask that was, once again, applied to
all imagery. This was accomplished by
applying an upper threshold to the his-
tograms for Spot-5 bands 2 and 3
(green and red), in which snow and ice
is highly reflective.

Because topography can affect
spectral analysis (Drury 1993; Jensen
2005), a 1:50,000 Digital Elevation
Model (DEM) mosaic of  the Canadian
Digital Elevation Data (downloaded
from Canadian Council on Geomatics
website: www.geobase.ca) was created
for the study area, and shadows were
modelled to produce hill shade images
using the sun azimuth and elevation
values for each sensor (see Table 2 for
sun azimuth and elevation values). A
mask was created from these images
and overlaid on the final classification
maps to screen out areas of  topo-
graphic shadows and diffuse reflection
from back slopes that could result in
spectral misclassification.

Calculation of Ratios
Calculation of  band ratios is a com-
mon image processing technique used
to highlight spectral reflectance differ-
ences between minerals as a function
of  wavelength as well as to reduce
topographic illumination effects
(Drury 1993; Jensen 2005). Table 3
presents well-documented ratios
applied to the optical data in this study
in order to highlight different minerals.
These ratios were also used in concert
with the raw data to classify different
rock types. 

Training Areas 
Once the images were masked, the
spectral – lithological classes were
defined (training area and description
columns, Table 1). This was based on
expert geologic knowledge of  the
study area as well as the spectral diver-
sity observable in the Landsat, Spot
and Aster images. Six main lithological
classes (Table 1), including basalt of
the Natkusiak Formation, Franklin
intrusive rocks (gabbro–diorite sills and
dykes), carbonate of  the Wynniatt For-
mation, carbonate of  the Cambro–
Ordovician succession, evaporite rocks
of  the Minto Inlet and Killian Forma-
tions, and quartz arenite of  the Kuu-
jjua Formation (Fig. 1) were defined
based on the new geological map (Fig.
2a) and field information.

Although vegetation, water
and ice were excluded in all images by
masking (discussed above), there were
still some small areas of  dry (low
chlorophyll) vegetation present in the
resulting images. To avoid the interfer-
ence of  these spectra with other rock
spectra, an additional class was created
to represent dry vegetation. Some of
the classes that were selected on the
basis of  expert geologic knowledge
showed variable spectral responses in
different parts of  the images. This
could be attributed, in part, to the
complicating spectral signatures of
overlying glacial sediments and/or
other overburden materials or vegeta-
tion cover. For example, in some parts
of  the study area, the Natkusiak basalt
exhibits a lower reflectance that is visu-
ally distinguishable from neighbouring
basaltic areas. This apparent spectral
difference between basalts could be
attributed to primary layering and com-
positional differences, grain size, and
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secondary processes such as weather-
ing. To account for these apparent
spectral differences, two separate basalt
classes were assigned, as well as a third
class for those parts that were covered
by thin, dry vegetation.  Similarly, a
separate class was assigned to gab-
bro–diorite covered by thin vegetation.
Three surficial classes (glacial tills) were
defined based on the spectral respons-
es observable on the Landsat-7, Land-
sat-8, and Spot-5 imagery, making a
total of  thirteen classes used for the
classification (see Table 1). 

To facilitate a comparison with
the new geology map, both the detailed
lithological map (Fig. 2a) and training
areas were generalized into six basic
rock types and one surficial type (Fig.
2b) to evaluate which type of  imagery
provided the closest representation of
the mapped geology (Table 1). The
seven basic lithologic types that display
different spectral reflection characteris-
tics were basalt, Franklin intrusive
rocks, carbonate rock, evaporite, sand-
stone, dolostone, and Quaternary cover
(Fig. 2b) The number of  polygons and
pixels for each training class is shown
in Table 1.

The well-known maximum
likelihood classification algorithm
(MLC), a parametric classifier, was
employed with the Robust Classifica-
tion Method (RCM) to evaluate train-
ing area statistics for normal (gaussian
distributions) using first-order statistics
and visual analysis of  histograms (both
cumulative and non-cumulative). This
analysis confirmed that all distributions
were normal or very close to normal,
thus justifying the use of  the MLC
algorithm. Hereafter we refer to this
algorithm as RCM-MLC.

Training Area Separability
For a successful classification, the
training areas must represent each rock
type, be spectrally pure, and statistically
separable. The separability of  a pair of
probability distributions can be meas-
ured by means of  divergence, which is
defined in terms of  the likelihood
ratio:

Lij (x) = p(x|ωi) /p(x|ωj)          (Eq. 2)

where p(x|ωi) and p(x|ωj) are the val-
ues of  the ith and jth spectral class
probability distributions, respectively, at
position x (Richards and Jia 2006). The

separability of  the training dataset was
examined using the transformed diver-
gence (TD) statistic, which is consid-
ered to be a better measure than sim-
ple divergence (Richards and Jia 2006).
TD values range between 0 and 2. Val-
ues greater than 1.9 indicate that the
class pairs have good separability,
whereas values less than 1 indicate that
the class pairs are not spectrally separa-
ble and perhaps should be combined
into one class. Values between 1.5 and
1.9 indicated moderate to good separa-
bility.

Figure 3a and 3b are plots of
TD for each of  the thirteen lithological
– surficial classes and seven generalized
lithological – surficial classes (see Table
1), respectively. In general, the training
areas are statistically separable for all
data except for the Aster thermal
imagery (thermal infrared, or TIR).
The Landsat-7 and Landsat-8 data
offer the best separability, closely fol-
lowed by Aster, whereas Spot-5 offers
lower separability. The separability
results indicate that classification can
proceed, although the TIR results
would be marginal.

Classification
Supervised classification is based on
the premise that a priori knowledge of
the features to be classified exist (i.e.
training areas); this knowledge is then
used to find similar areas based on the
training statistics in an n-dimensional
dataset. 

A number of  approaches that
make use of  training areas for not only
producing a classification but also for
validating the classification are typically
employed. The same training dataset
can be used for producing the classifi-
cation and for validating the classified
map using a confusion matrix. Howev-
er, using the same training dataset for
both classification and validation leads
to a statistical bias that will result in an
inflated value of  the overall accuracy
(Jones and Vaughan 2010). A more
robust approach is to define one train-
ing dataset for classification and anoth-
er independent set for validation, or
else use a specified portion of  the
training dataset for classification and
validation. These latter approaches
provide a much more robust and statis-
tical validation of  the classified map, as
an independent set of  training areas
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Table 3. Summary of  ratios applied to the remotely sensed data.^

Ratio
Data ( band numbers) Comment

LANDSAT 7 3/1 Ferric iron
4/3 Biomass - vegetation
5/7 Clay
5/4 Ferrous iron

LANDSAT 8 6/5 Ferrous iron
6/7 Clay
5/4 Biomass - vegetation

4/1b Ferric iron

ASTER – VNIR & SWIR 6/7 Phyllic alteration
5/6 Kaolinite, muscovite, phengite

5+7/6 Phyllic alteration
6+9/8 Amphibole / MgOH

6+9/7+8 Epidote, chlorite, amphibole
7+9/8 Epidote, chlorite, carbonate

4/3 Ferric oxides
4/2 Gossan
3/2 Biomass - vegetation
4/1 Gossan
2/1 Ferric iron
6/8 Amphibole

^References for these ratios can be found in Drury (1993), Abrams and Hook (1995),
Lillesand and Keiffer (2004), and Kanlinowski and Oliver (2004).



are used to construct the confusion
matrix. 

Training area selection is often
difficult because of  the variability of
spectral responses over the same ter-
rain resulting from seasonal differ-

ences, variation in moisture content,
and atmospheric effects. Furthermore,
the area to be classified may be inac-
cessible (typical of  many areas in the
north) and therefore cannot always be
verified by a field visit. Also, the fea-

tures to be classified (bedrock and sur-
ficial materials) may present either a
limited or wide range of  spectral
responses, making classification diffi-
cult. In some cases there are several
people involved in the selection of  the
training areas, also leading to variability
because of  different user knowledge
and experience. Therefore, training
area variability reflects inconsistencies
in the properties inherent in the train-
ing area selection process. In this study,
one of  us (RR) guided the training area
selection based on his knowledge of
the geology and the spectral responses
exhibited by different bedrock types in
the remotely sensed imagery. Two
ensemble classification algorithms were
used to assist in quantifying the uncer-
tainty within the training dataset.

Robust Classification Method
(RCM) Classifier
The Robust Classification Method
(RCM; Harris et al. 2012b) is an
ensemble classifier that is based on a
randomized and repeated sampling of
a training dataset in concert with tradi-
tional cross-validation of  the classifica-
tion results. A series of  predictions
(classified maps) and associated uncer-
tainty maps and statistics are produced.
This method employs any supervised
classification algorithm available in the
ENVI™ suite of  software; in this study
we use the MLC.  RCM is especially
useful for assessing the effects of  spec-
tral and spatial variability in the classifi-
cation process. Specifically, this method
provides a majority classification and
variability map, and ‘confusion’ statis-
tics; these quantify the uncertainty in
the classification process with respect
to statistical (spectral) variability in the
training dataset as well as identifying
areas that show spatial variability in
classification. RCM provides a more
robust estimate of  overall accuracy as
it is based on producing a number of
classifications (in this case, ten) that
can be leveraged to not only provide
an overall average classification accura-
cy but also supply an estimate of  clas-
sification uncertainty (uncertainty map;
see below). The RCM input parameters
used herein included ten iterations,
each of  which sampled a random
selection of  50% of  the training data
for classification and 50% for inde-
pendent validation.
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Figure 3. (a) Transformed Divergence (TD) values calculated from the training
areas for the thirteen lithological – spectral classes for Landsat-7 (L7), Landsat-8
(L8), Aster (VNIR and SWIR; A_vnir_swir), Aster thermal (A_TIR), and Spot-5
(SPOT). See Table 1 (training data column) for the description of  each lithological
symbol along the x-axis. (b) Transformed Divergence (TD) values calculated from
the training areas for the seven generalized lithologic classes for Landsat-7 (L7),
Landsat-8 (L8), Aster (VNIR and SWIR; A_vnir_swir), Aster thermal (TIR) and
Spot-5 (SPOT). See Table 1 (generalized lithologies and surficial materials column)
for descriptions of  the generalized lithotypes (along the x-axis) and how they were
derived from the detailed geology (detailed lithologies and surficial materials col-
umn). For both  TD plots, lithotype classes are shown along the x-axis and TD val-
ues along the y-axis. 

b 



The majority classification
map produced by RCM is based on the
most ‘popular’ class on a pixel-to-pixel
basis for the ten iterations, and the
uncertainty maps are based on variabil-
ity in the classification on a pixel-to-
pixel basis. Average rule images that
show the strength of  membership of
each pixel to a specific class, similar to
a class probability image, are also gen-
erated. Harris et al. (2102b) provide a
more detailed description of  the RCM
approach. RCM using the maximum
likelihood classification algorithm
(RCM–MLC) was applied to the twelve
combinations of  remotely sensed data
shown in Table 4. Two sets of  classifi-
cations were produced, based on the
above data combinations: one for the
thirteen spectral unit classes and one
for the seven generalized (bedrock and
surficial) classes (Table 1) to facilitate a
comparison with the generalized geolo-
gy map (Fig. 2b).

Random Forests (RF) Classifier
Random Forests (RF) is an ensemble,
and multiple decision-tree classifier
that offers a number of  advantages for
classification:
• data can be binary, categorical or

continuous;
• the classifier performs internal

cross-validation through ‘boot-
strapping’, which provides a robust
estimate of  classification accuracy
using out-of-bag estimates;

• it is a non-parametric classifier and
is relatively insensitive to outliers
in the training data;

• it requires little user input (m, the
number of  decision trees, and n,
the number of  variables for each
decision tree);

• it produces a classification map,
but more importantly, probability
maps (strength of  membership in
each lithological class); and 

• it ranks the input variables with
respect to their importance in the
predictions.

Random Forests was originally
developed by L. Breiman and A. Cutler
at the University of  California, Berke-
ley (Breiman et al. 1984; Briemen
2001). Training data are required for
this approach, similar to other super-
vised classifiers. For each tree (the
number of  decision trees, m, is deter-
mined by the operator), a random

selection of  the input variables (i.e.
remotely sensed image bands, n) is
made. The number of  variables select-
ed for each tree is a fraction of  the
total number of  variables; the square
root of  the number of  variables is
often used. Each tree employs a ‘bag-
ging’ process (i.e. ‘bootstrap’ sample;
Brieman 1996) whereby approximately
two-thirds of  the training areas (pixels)
are used to create a prediction (referred
to as in-bag) and one-third to validate
the accuracy of  the prediction
(referred to as out-of-bag, or oob). This
random sampling with replacement of
the training dataset is undertaken for
every tree. In-bag data are used to create
multiple decision trees that are applied
to produce independent classifications.
At each node of  the individual deci-
sion tree, the best split is chosen from
a random sample of  variables. Each
tree is grown to the maximum extent
with no pruning. We used the Gini
index to determine the impurity at
each node: 

Gini Index = 1 - Sc(p2 (c|t)       (Eq. 3)

where c = number of  classes (e.g. litho-
types), t = node of  a tree, p = relative
frequency of  c (a given lithotype class)

The stop criteria for splitting
each node is based on the minimum of
samples in a node (we used 1) and the

minimum impurity in a node (we used
0) allowing full growth of  the decision
tress (no pruning).Thus, an ensemble
of  trees (predictions) is created and a
voting procedure is employed to assign
the majority class to each pixel in the
final prediction map. According to
Brieman (2001), Gislason et al. (2006)
and Menze et al. (2009), RF is not sen-
sitive to noise or over-fitting and there
is no need for cross-validation as it is
estimated internally. However, as with
any supervised classification method,
an independent check of  the training
dataset of  each lithotype is still
required to calculate an unbiased and
more robust estimate of  classification
accuracy. Additionally, the probability
of  membership in each class is also
generated, which can be used to assess
the uncertainty of  the RF classifica-
tion. Figure 4 summarizes the RF clas-
sification process. 

Another very useful aspect of
RF is that it calculates the importance
(predictive power) of  each variable in
the classification process. This is
accomplished by:
• For each tree the oob samples are

permutated in the repsective vari-
able and then put down the tree
and the number of  correct classifi-
cations are caclulated (nP);

• The in-bag training samples (origi-
nal) are put down the tree and the
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Table 4. Data combinations used for classification.

Landsat-7 6 spectral bands – 3 visible, 1 NIR and 2 SWIR

Landsat -8 7 spectral bands – 4 visible (two blue bands), 1 NIR and 2 SWIR

Aster 9 spectral bands - 2 visible, 1 NIR and 6 SWIR

Aster 5 TIR bands

Spot-5 4 bands – 2 visible, 1 NIR and 1 SWIR

Landsat -7 6 spectral bands + 4 ratios (see Table 3)

Landsat- 8 7 spectral bands + 4 ratios (see Table 3)

Aster 9 spectral bands + 12 ratios (see Table 3)

Aster 7 – 6 spectral bands + total field magnetic data

Landsat- 8 7 spectral bands + total field magnetic data

Landsat – 7 6 spectral bands and 4 ratios + total field magnetic data (for 
generalized classification only)

Landsat - 8 7 spectral bands and 4 ratios  + total field magnetic data (for 
generalized classification only)



number of  correct classifications
are calculated (nC); nC–nP calculat-
ed;

• Calculate Nc–Np.
The average of  the differences of  the
accuracies for all trees is the raw
importance of  each variable. However,
to provide a more robust estimate the
raw variable importance is divided by
the respective standard deviation creat-
ing a normalized variable importance
value. A high normalized value has a
high importance for the entire RF and
vice versa for a low number.

A RF classification map using
all the available raw and ratio data from
the Landsat-7 and Landsat-8, Aster
(VNIR: visible near infrared; SWIR:
shortwave infrared; and TIR) and mag-
netic data, totalling 43 input bands, was
produced along with a probability-of-
membership map (same as a rule map
for RCM–MLC), which was used to
reduce the uncertainty by only accept-
ing pixels for each class that showed a
strong membership (>95%). In addi-
tion, the 43 input bands were ranked
for their predictive power using the
method as discussed above. The RF
parameters used include n (number of
variables to create each tree), which
was set to the square root of  the total
number of  variables, and m (number of
decision trees), which was set to 100
through experimentation. As pointed
out by Rodriguez-Galiano et al. (2014),

the number of  trees is proportional to
the classification accuracy until the oob
error converges. Once the error con-
verges at a given number of  trees, the
number of  random variables selected
for each tree (n) minimally alters the
classification accuracy. In this study,
the oob error stabilized at 100 decision
trees (m) in all of  our experiments.  

Ensemble Classifications
Ensemble methods (Benediktsson and
Swain 1992; Doan and Foody 2007;
Benediktsson et al. 2007; Banfield et al.
2007) leverage multiple models (i.e.
classifications) to obtain a better pre-
diction than could be derived from
individual predictions. The flexibility of
ensembles can, in theory, enable them
to over-fit the training data more than
a single prediction would, but in prac-
tice, some ensemble techniques, espe-
cially bagging (Breiman 1996; Freund
and Schpire 1999) tend to reduce prob-
lems related to over-fitting of  the train-
ing data. In addition, they provide a
more robust estimate of  the overall
classification accuracy. Both classifica-
tion algorithms used in this study,
RCM–MLC and RF, are ensemble clas-
sifiers as they produce multiple predic-
tions (classifications), which are com-
bined using a voting procedure that
selects the most popular class on a
pixel basis. 

Multiple Classification Systems
(MCS)
Multiple classification systems (MCS;
Polikar 2006; Benediktsson et al. 2007;
Waske and Braun 2009) are a fairly
recent concept; they do not refer to a
specific classification algorithm but
describe a more general classification
strategy. MCS can involve combining
classifications based on a number of
different algorithms, variants of  the
same algorithm, or classifications
derived from different datasets. In this
case, the latter approach was utilized by
combining classifications derived from
Landsat, Spot-5, Aster and airborne
magnetic data. Specifically, we use a
stacking approach whereby the data
combinations that produced the high-
est classification accuracies for the gen-
eralized lithological classes (seven in
total) were combined in an ensemble
fashion by (a) taking the majority class
(most ‘popular’) for each pixel (MCS
majority map), and (b) only classifying a
pixel when the class was in agreement
with all input classifications comprising
the stack (MCS agreement map). 

As part of  this MCS process,
and because multiple classifications are
being combined, uncertainty measures
such as the range and/or standard
deviation of  the classification on a
stacked pixel basis may be calculated.
In this study, a standard deviation cal-
culation was used on the pixel stack
(derived from the 100 decision trees
for RF and 10 iterations for RCM–
MLC) to estimate uncertainty in the
MCS classification process. The stan-
dard deviation map was then thresh-
olded and used to mask-out uncertain
areas on the MCS classification maps.

A variation of  the MCS
theme was also added by selecting the
data combination that provided the
highest classification on a class-to-class
basis and producing a classification
map from these selections. Thus, this
MCS best bands majority classification map
contains the class from the data combi-
nation that provided the highest classi-
fication accuracy. To further decrease
the uncertainty in this classification
image, the average rule or probability
images (strength-of-class membership,
discussed above) generated by RCM–
MLC were used to create the classifica-
tion map. Each rule image for each data
combination that provided the highest
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Figure 4. Summary of  the Random Forest (RF) classification algorithm.



classification accuracy was thresholded
at the 95% level, thereby presenting,
for each class, the pixels having the
strongest membership. Again, this pro-
duced a map where only the most cer-
tain pixels were classified.

CLASSIFICATION AND RESULTS

RCM–MLC Classifications: Thirteen
Classes
Table 5 presents the results of  the
RCM–MLC classification for all data
combinations for all thirteen lithologi-
cal – surficial classes (Table 1), and
Figure 5 is a box and whisker plot of
the average accuracies over the ten iter-
ations of  RCM–MLC for each data
combination. Figure 6 is a plot of  the
average producer’s and user’s accuracy.
Figure 7a shows the majority classifica-
tion map for the thirteen classes
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Figure 5. Box and whisker plot showing average (shown as a cross symbol) and
median (shown as a vertical line) classification accuracies as well as the range in
accuracies for ten iterations of  Robust Classification Method–maximum likelihood
classification (RCM–MLC) (using various data combinations) for thirteen lithologi-
cal – spectral classes.

Table 5. Results of  Robust Classification Method–maximum likelihood classification (RCM–MLC) classification showing aver-
age overall, producer’s and user’s accuracies and average class accuracy for each data combination for each of  the thirteen litho-
logical – spectral classes (Table 1). Bold numbers are the highest classification accuracies.^

Class L7_r L8_r L7_rr L8_rr ASTER ASTER ASTER_rr L7_rr_mag L8_rr_mag SPOT
VNIR -TIR

SWIR_r

Carbonates 85.5 97.9 86.2 94.9 85.4 65 59.3 96 98 79

Evaporites 87.3 98.2 89.7 87.3 89.4 60.9 51.2 90.8 84.7 91.5

Basalts Nfb1 79.3 55.9 87.9 67.1 11.9 12.2 25.2 54.3 40.2 76.7

Basalts Nfb2 92.6 72 86.7 57.1 41 23.7 56.8 91.1 77.9 78.8

Basalts Nfbv 74.6 88.2 75.8 83.8 81.9 24.6 58.9 69.1 66.3 74.1

Franklin Diabase Nfg 91.2 92.3 92.6 95.2 81.9 36 83.7 91.2 87.8 87.6

Franklin Diabase Nfgv 73.7 92.2 89 94.2 21.2 7 41 47.7 72.8 82.5

Dolostones 83.2 95.3 80.1 96.4 56.7 15.1 65.2 65.2 74.6 74.8

Sandstone 61.7 78 84.6 74.6 62.3 93.8 32.8 50.7 58.7 47.1

Till1 90.5 79.1 93.5 75.3 81.3 70 79.5 76.5 64.3 62.1

Till2 92.6 78.9 97.6 91.8 60.9 20.2 53.2 73 75.9 57.8

Till3 89.4 88 92.8 96.3 79.3 32.7 75 95.4 86.7 71.8

Vegetation 97.2 70.6 95.8 91.1 45.3 16.4 13.4 82 80.6 90.5

Overall accuracy 86.3 84.2 89.7 86.2 65.1 42.9 57.3 77.1 77.5 76.1

Average Producer’s 
accuracy 85.5 83.1 88.4 84.6 61.3 40 54.5 81.3 74.9 74.3

Average Users 
Accuracy 87.3 86.6 90.1 87.4 64.6 42.5 57.6 86.3 81.2 75.4

^ Key to abbreviations: L7_r  = Landsat-7 (raw); L8_r = Landsat-8 (raw); L7_rr = Landsat-7 (raw and ratios); L8_rr = Landsat-8 (raw
and ratios); ASTER VNIR_ SWIR_r = Aster very near infrared and shortwave infrared (raw); ASTER–TIR= Aster thermal bands;
ASTER_rr = Aster VNIR and SWIR (raw and ratios); L7_rr_mag = Landsat-7 (raw, ratios and magnetics); L8_rr_mag = Landsat-8 (raw,
ratios and magnetics); SPOT = Spot-5 (raw).



derived from the data combination that
produced the overall RCM–MLC high-
est classification accuracy (Landsat-7
raw and ratios data – 89.7%) and Fig-
ure 7b shows the associated RCM–
MLC uncertainty map.

With respect to RCM–MLC,
the highest classifcation accuracies
were obtained from Landsat-7 (raw
and ratios), Landsat-7 (raw), Landsat-8
(raw and ratios), and Landsat-8 (raw),
all of  which have an overall accuracy
greater than 80%. The other combina-
tions, including Aster (especially the
TIR) and Spot-5, have lower classifica-
tion accuracies. The results from Aster
are generally lower and no doubt relate
to the acquisition parameters (Table 2),
primarily a lower sun angle, which
would result in a lower signal-to-noise
ratio. 

With reference to Table 5, the
carbonate rocks are classified most
accurately on the Landsat-8 (raw and
magnetics) data, as these rocks have
very low magnetic susceptibility (com-
pared to the basalts and Franklin dia-
base) and very high reflectance in the
visible bands and band 6 (SWIR), but

low reflectance in band 7 (SWIR).
Note that the accuracies for carbonate
are consistently high for all data com-
binations with the exception of  Aster.
Evaporites are also classified with high
accuracy on all data combinations, with
the exception of  Aster (both
VNIR–SWIR and TIR); Landsat-8
(raw data) provided the highest classifi-
cation accuracy (98.2%). 

The Natkusiak basalts, which
comprise three distinct spectral sub-
units (see Table 1), are best classified
on combinations of  the Landsat-7 and
Landsat-8 data.  Landsat-7 (raw and
ratios) provide the highest classification
accuracy for Nfb1 (87.9%), Landsat-7
(raw) for Nfb2 (92.6%) and Landsat-8
(raw) for Nfbv (88.2%). It is interesting
to note that addition of  the magnetic
data does not provide higher classifica-
tion accuracies compared to the Land-
sat-7 and Landsat-8 optical data used
alone. The Franklin intrusive rocks
(diabase), which comprise two spectral
sub-units (Table 1), are best classified
on the Landsat-8 (raw and ratio) data
combination (Nfg – 94.2%; Nfgv –
94.2%). Inclusion of  the Landsat-8

ratios improves the overall classifica-
tion accuracy from 3 to 5% for the
Nfg and Nfgv sub-units, respectively.
Dolostones are again best classified on
the Landsat-8 data, especially when the
ratios are included (96.4%). 

In general, the Aster TIR data
offer little separation between the dif-
ferent rock types; however, the TIR
data provide appreciably higher classifi-
cation accuracy for sandstone (93.8%)
than the other data combinations. The
data combination that offers the sec-
ond highest classification for sandstone
(84.6%) is the Landsat-7 (raw and
ratios). Visual examination of  the ther-
mal data indicates that the training
areas used for classification of  sand-
stone are thermally much cooler than
other rock types, especially at the
8.125, 8.475 and 8.925 µm wave-
lengths. This is also confirmed by the
separability values (TD) (Fig. 3a),
which reveal that sandstone has the
highest TD value for all thirteen class-
es.  

The Landsat-7 and Landsat-8
(raw and ratios) data provide the high-
est classification accuracies for the
three spectrally distinct till classes.
Again, inclusion of  the ratio data
increases the accuracies by an average
of  4%. The Aster and Spot-5 data pro-
vide lower classification accuracies
when compared to the Landsat data. It
is interesting to note that inclusion of
magnetics with the Landsat-7 (raw and
ratio) data increases the classification
accuracy from 92.8 to 95.4%, very
close to the best accuracy provide by
Landsat-8 (raw and ratio; 96.3%). Visu-
al analysis of  the magnetic data indi-
cates that till unit 3 has a lower mag-
netic signature than the others, which
may reflect lower magnetic susceptibili-
ty of  the underlying bedrock (not
known because of  glacial cover),
and/or a lower magnetite content in
the overburden compared to other till
units.

RCM–MLC Generalized Lithological
Classifications: Seven Classes
Figure 8 is a box and whisker plot of
the average RCM–MLC accuracies for
nine data combinations (Table 4) based
on the seven generalized lithological –
surficial classes (Table 1). Table 6 pro-
vides a summary of  overall accuracy,
producer’s and user’s accuracy, as well
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Figure 6. Plot of  average overall accuracy (Ave A), average Producer’s accuracy
(Ave P) and average User’s accuracy (Ave U) for ten iterations of  the Robust Clas-
sification Method–maximum likelihood classification (RCM–MLC; using various
data combinations) for thirteen lithological – spectral classes. The data combination
is shown on the x-axis and classification accuracy (0–100%) along y-axis.
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as classification accuracy by class for all
the data combinations.  Note that TIR
was included with the Aster (raw and
ratio) data combination mainly because
of  its abilty to discriminate sandstone.
Also note that for the generalized clas-

sifications two more data combinations
were added –  Landsat-7 and Landsat-8
(raw, ratios, and magnetic data) (Table
4). These were included because of  the
additional value the ratio and magnetic
data provided for classifying the thir-

teen  lithological – spectral classes, dis-
cussed above. The data combinations
comprising the Landsat-7 and -8 (raw),
Landsat-7 and -8 (raw and ratios),
Landsat-7 and -8 (raw, ratios and mag-
netics) and the Aster (raw and ratios)
data offer classification accuracies in
excess of  85%; the Landsat-8 (raw and
ratios) offers the highest overall, pro-
ducer’s, and user’s accuracies of  88.4,
87.7 and 90.1%, respectively (Table 6).
Figure 9a shows the majority classifica-
tion map for the seven generalized
lithological – surficial classes derived
from the data combination that pro-
duced the highest overall classification
accuracy (Landsat-8 raw and ratios –
88.4%), and Figure 9b shows the asso-
ciated uncertainty map. The Aster
(raw) and Spot-5 data combinations
resulted in significantly lower accura-
cies. In general, the classification accu-
racies are higher for the generalized
lithologies (seven classes) versus the
more detailed lithologies and thirteen
spectral sub-units for all data combina-
tions. This is expected because of  the
reduction and generalization of  the
detailed lithological classes.
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Figure 8. Box and whisker plot showing average (shown as a cross symbol) and
median (shown as a vertical line) classification accuracies, as well as the range in
accuracies for the ten iterations of  the Robust Classification Method–maximum
likelihood classification (RCM–MLC) for the seven generalized lithological – surfi-
cial classes (see Table 1).

Table 6. Results of  Robust Classification Method–maximum likelihood classification (RCM–MLC) classification showing aver-
age overall, producer’s and user’s accuracy and average class accuracy for each data combination for each of  the seven general-
ized lithological – surficial classes. Bold numbers are the highest classification accuracies.^

Class L7_r L8_r L7_rr L8_rr ASTER ASTER_ L7_r_mag L8_r-mag SPOT-5
VNIR rr_TIR (L7_rr_mag) (L8_rr_mag)

SWIR_r

Carbonates 87 96.2 89 93.3 81.5 69.6 80.8 (92.2) 91.8 (95.3) 78.9

Evaporites 82.4 82.4 89.2 84.4 73.7 89.6 95.5 (98.6) 85.4 (95.3) 93.8

Basalts 90.1 87.8 87.5 81.4 63.4 90.9 90.7 (86.4) 80.2 (76.1) 71.2

Franklin diabase 85.1 87.4 79.9 86.4 68.5 88.9 80.4 (82.8) 82.8 (90.5) 72.9

Dolostones 91 89.7 87.9 96.8 68.5 73.2 72 (53.8) 88.9 (91.2) 83.4

Sandstones 62.9 70.6 62.7 73.1 30.1 86.7 42.2 (77.8) 72.7 (41.9) 66.4

Quaternary – 
till cover 92.7 90.4 92.6 94.9 77.8 91.8 93.9 (91.5) 93.2 (92.4) 79.5

Overall accuracy 86.6 87.9 85.3 88.4 68.8 86.9 83.2 (86.3) 86.1 (85.7) 76

Average Producer’s 
accuracy 83.8 85.8 84.5 87.7 66.7 84.3 79.8 (83,1) 85 (83.7) 78.1

Average Users 
Accuracy 86 89.6 87.3 90.1 65.8 86.2 81.7 (87.7) 88.1 (87.1) 73.3

^ Key to abbreviations: L7_r  = Landsat-7 (raw);  L8_r = Landsat-8 (raw);  L7_rr = Landsat-7 (raw and ratios); L8_rr = Landsat-8  (raw
and ratios);  ASTER VNIR_ SWIR_r = Aster very near infrared and shortwave infrared (raw); ASTER_rr_TIR = Aster, all bands, ratios
and thermal bands;  L7_r_mag = Landsat-7 (raw, magnetics); L7_rr_mag = Landsat-7 (raw, ratios and magnetics); L8_r_mag = Landsat-8
(raw, magnetics); L8_rr_mag = Landsat-8 (raw, ratios and magnetics); SPOT-5 = Spot-5 (raw).
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The carbonate rocks, once
again, are most accurately classified on
the Landsat-8 (raw; 96.2%) and the
Landsat-8 (raw, ratios, magnetics;
95.3%) data combinations (Table 6).
Addition of  the ratios and magnetic
data in this case does not improve the
overall accuracy. Again, recall that car-
bonates are easy to discriminate using
optical data. The evaporites are classi-
fied most accurately (98.6%) on the
Landsat-7 (raw, ratios, magnetics) data
combination, although they have a very
low magnetic susceptibility. Addition of
the ratio data again helps to increase
the overall accuracy by approximately
6% and the magnetic data by approxi-
mately 5%. The basalts are best classi-
fied using, suprisingly, the Aster (raw
and ratios), Landsat-7 (raw, magnetics)
and  Landsat-7 (raw), all offering
greater than 90% accuracy. In this case,
the ratio data do not improve classifi-
cation accuracies. The magnetic data
are useful because the basalts have an
enhanced magnetic response (higher
magnetic susceptibility). The Landsat-8
(raw, ratio, magnetics) data combina-
tion results in the highest classification
accuracy for the Franklin intrusive
rocks. Addition of  the ratios and the
magnetic data, because of  their high
magnetic response, offers an increase
in accuracy of  approximately 4%. The
dolostones are best classified by the
Landsat-8 (raw and ratios) data combi-
nation, which is 5% higher than any
other data combination.  Inclusion of
the ratios improved the accuracy by
approximately 7% compared to the
raw data only. The Aster data provided
the highest classification accuracy for
sandstones (VNIR and SWIR; raw and
ratios), for reasons relating to the ther-
mal data, discussed above. The accura-
cy is on the order of  15% higher than
for any other data combination. Again,
the Landsat-8 (raw and ratios) data
provided the best classification of
Quaternary deposits (94.9%).

Random Forest (RF) Classification
Figure 10a shows the RF classification
map and Figure 10b is a RF map in
which uncertain pixels have been
removed, as discussed in a previous
section. Overall, the RF map produced
the highest classification accuracy of
99%, which exceeds the highest overall
RCM–MLC classification accuracy, that

of  the Landsat-8 (raw and ratios) data
combination (88.4%), by approximately
10%. However, one has to keep in
mind that all 43 bands (raw and ratios)
from the Landsat-7, Landsat-8, and
Aster (VNIR, SWIR, TIR) were used
for classification.  The RCM–MLC
classifications used various data combi-
nations, discussed above, but not the
total number of  bands. 

The other purpose of  using
the RF classifier was to rank the pre-
dictive power of  each input band, the
results which are shown on Figure 11
(Gini index) and Table 7. The groups
of  variables shown in Table 7 corre-
spond to the breakpoints as indicated
in the Gini index plot (Fig. 11). With
respect to the ranking of  the bands
that provide the most predictive power,
the ferrous Landsat-7 ratio and Land-
sat-8 band 5 (NIR) (Group 1 – Table 7
and Fig. 11) provide the most signifi-
cant contributions. Group 2, also sig-
nificant contributors, contain two
Landsat-8 ratios, ferrous iron and bio-
mass. Group 3 primarily comprises
SWIR and NIR bands derived from
Landsat-7 and Landsat-8. Of  interest is
the Aster NIR band, also included in
this group, which provides moderate
predictive power. Also of  note are the
total field magnetic data found in
Group 6. The ferrous ratios and mag-
netic data are useful predictors, espe-
cially for the basalt and Franklin intru-
sive rocks, which are characterized by
ferrous iron minerals and magnetite
that result in high magnetic susceptibil-
ities. However, the classes characterized
by low magnetic susceptibility can also
be separated using the magnetic data,
as discussed above.

Multiple Classification System –
Seven Classes
Figure 12 shows the MCS majority classi-
fication map, discussed above, in which
each pixel was classified with the
majority class, from the ensemble stack
of  data combinations that provided an
overall classification accuracy in excess
of  80% (Table 6).  These included
Landsat-7 (raw), Landsat-8 (raw),
Landsat-7 (raw and ratios), Landsat-8
(raw and ratios), Landsat-7 (raw, ratios
and magnetics), Landsat-8 (raw, ratios
and magnetics) and Aster (raw, ratios
and TIR).

Figure 13a is an ensemble map
that shows the class agreement (MCS
classification agreement map) for the best
seven classifications of  the generalized
lithotypes (>80% overall accuracy;
Table 6), whereas Figure 13b shows
the uncertainty associated with this
map. Recall that the uncertainty map is
based on the standard deviation of  the
majority vote for each pixel.  Figure
13c is the MCS agreement map with the
uncertainty, composed of  the pixels in
class 5 and 6 (most uncertain = less
agreement; Fig. 13b) removed. Note
that not all the pixels in Figure 13c
have been classified, because uncertain-
ties in the classification process associ-
ated with snow, ice, high biomass, and
pixels that do not show agreement, as
well as low reflection from back slopes,
have all been removed. 

The data combination that
provided the highest classification
accuracy for each of  the seven general-
ized lithological classes (Table 8) was
used to produce a MCS best bands major-
ity classification map (Fig. 14). In addi-
tion, the average rule images were used
for each class to include only pixels
that have a membership greater than
95% probability, as discussed above.
For sandstone, which had the lowest
classification accuracy, the best classifi-
cation was achieved by the Aster (raw,
ratios and TIR) data combination,
whereas evaporites had the highest
classification accuracy produced from
the Landsat-7 (raw, ratios and magnet-
ics) data combination.

Figure 15 is a MCS map that
combines the three MCS maps dis-
cussed above – the MCS majority classifi-
cation, agreement and best bands maps.
This was produced by first taking pix-
els that were in agreement on all three
maps and then pixels that were in
agreement on a combination of  two of
the three maps. As shown in the leg-
end, only two classes, basalt and car-
bonate rocks, were in agreement on all
three MCS maps; the others were in
agreement on only two of  the MCS
maps. This indicates that the basalts
and carbonate rocks were easiest to
classify as they have unique spectral
and magnetic signatures. 

Comparison to Generalized Geology
Map 
A comparison of  the generalized
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lithology (Fig. 2b) with the generalized
classification maps (seven generalized
lithological classes) generated by both
RCM–MLC and RF was undertaken, as
discussed in a previous section. The
generalization was necessary, as spec-
tral heterogeneity recorded on the
more detailed classification maps (thir-
teen classes) occurred within each of
the generalized lithological units shown
on Figure 2b.  Table 9 summarizes the
classification agreement with the gen-
eralized lithology. The data combina-

tion that provided the best agreement
when compared to the generalized
geology map was achieved by Landsat-
8 (raw, ratios and magnetics, 46.1%)
followed by the Landsat-7 (raw, ratios
and magnetics, 44.9%). The RF classi-
fication (Fig. 10), using all 43 input
bands, resulted in an agreement of
42.4% when compared to the general-
ized geology map even though it pro-
vided the highest classification accura-
cy of  99% using cross-validation (oob)
of  the training areas.  It is clear that

addition of  the ratios and magnetics
data has improved the overall accuracy
when compared to the generalized
lithology map.

The MCS best bands classifica-
tion (RCM–MLC; Fig. 14) offers a
higher accuracy (57.7%) than the RF
and RCM–MLC classifications, indicat-
ing that from a MCS classification per-
spective, a best band approach is a wor-
thy undertaking.  However, the MCS
agreement map (Fig. 13a) and agreement
map with areas of  uncertainty masked
(Fig. 13c) provided accuracies of
69.8% and 71.6%, respectively. The RF
classification, when uncertainty was
removed as discussed previously, also
offered a high accuracy of  71.8%.
However, the increasing accuracy is
proportional to the degree of  uncer-
tainty. A low tolerance for uncertainty
in the classification process results in
fewer pixels being classified and, as
one would expect, a higher overall clas-
sification accuracy. 

Uncertainty Analysis
The RCM–MLC uncertainty (variabili-
ty) map (Fig. 7b) produced for the data
combination that provided the best
classification (i.e. the highest overall
accuracy) of  the thirteen classes, which
was the Landsat-7 (raw, ratios), was
compared to the majority classification
map (Fig. 7a) to determine if  there was
a relationship between class and areas
of  high classification uncertainty.  The
classes with the highest uncertainty
(class 7 on Fig. 7b) included the sand-
stones and evaporites. The same com-
parison was made with the generalized
lithological classes, in which Landsat-8
(raw, ratios) provided the highest accu-
racy (Fig. 9a, b). The class that experi-
enced the highest uncertainty was,
once again, sandstone.  This indicates
that sandstone is characterized by the
most spectral diversity and was not
fully represented by the associated
training areas. However, as mentioned
above, the sandstones were separable
using the Aster TIR data, because of
their unique thermal response.

DISCUSSION
This study has indicated that super-
vised classification techniques can play
a useful role in the generation of
bedrock and surficial maps of  north-
ern environments, providing that the
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Figure 11. Gini index plot showing variable (band) importance. Arrows indicate
breakpoints that divide the bands into groups. See Table 7 for description of  bands
composing each group. 



rocks and overburden demonstrate
good spectral separation. These suit-
able environments tend to occur in
Arctic Island and coastal regions where
less lichen cover occurs because of
favourable meso-climate conditions.
The classified maps presented herein
can be generated to accept more
uncertainty but with large areas (i.e.
more pixels) classified, producing what
looks more like a traditional geologic
map. 

The advantage of  semi-auto-
matic classification techniques, in addi-
tion to their efficiency and speed, is
that metrics that assess the uncertainty
of  the classification map can also be
generated. However, as demonstrated
here, a reduction in uncertainty results
in fewer pixels being classified, albeit
with greater overall confidence. These
maps can be used as preliminary maps
to aid in field mapping activities, as
well as within a GIS environment,

where they can guide more detailed
visual interpretation to fill-in unclassi-
fied pixels.

This study shows that a new
MCS classification approach using
majority classification, agreement and best
band maps can result in better agree-
ment with a generalized lithological
map (Fig. 2b). It should be noted that
the geology map used for comparison
purposes was produced by using an
integrated approach comprising the
visual interpretion of  stereo Spot-5
images and  detailed field work.

Landsat-7 and Landsat-8 (raw
and ratios) data combinations resulted
in the highest classification accuracies
using RCM–MLC.  Landsat-8 offers an
additional band in the blue portion of
the electromagnetic spectrum and
wavelengths similar to Landsat-7,
except that the bandwidths are narrow-
er. Both images were acquired in July,
which provides optimum conditions
because of  higher sun elevation angles.
The higher radiometric resolution of
Landsat-8 (16-bit) did not offer any
significant advantages with respect to
classification accuracy compared to
Landsat-7 (8-bit).  It is comforting to
confirm the good performance of
Landsat-8, which will provide uninter-
rupted world coverage once Landsat-7,
the workhorse of  remote sensing
applications for many years, expires.

The poor performance of
Aster is no doubt related to image
acquisition in mid September, when
the sun angle was only 20°, resulting in
a lower signal-to-noise ratio and an
increased topographic effect such as
shadowing and low reflectance from
backslopes.  The two Aster scenes
were corrected and mosaicked, and
although care was taken to radiometri-
cally balance the scenes, these factors
may also negatively affect the classifica-
tion results. As such, the comparison
with Landsat may not be made on a
level playing field; i.e. better results
may have been obtained from the
Aster data if  acquisition had occurred
in July. The VNIR and SWIR Aster
bands provided better results than the
TIR bands, except for sandstone, the
thermal properties of  which were
much different than the surrounding
rocks.  None of  the TIR bands were
selected by the RF classifier as being
strongly predictive (Table 7). Thermal
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Table 7. Ranking of  30 of  the 43 variables (image bands) constituting input to the
Random Forest (RF) classification.

RANK NUMBER DATA BAND
(group – see in gini index
Fig. 11) plot  (Fig. 11)

Group 1
1 8 L7 5/4 – ferrous iron
2 18 L8 Band 5 – NIR

Group 2
3 11 L8 6/5 – ferrous iron
4 13 L8 5/4 biomass

Group 3
5 34 ASTER Band 4 (NIR)
6 4 L7 Band 4 (NIR)
7 19 L8 Band 6 (SWIR)
8 5 L7 Band 5 (SWIR)
9 20 L8 Band 7 (SWIR)
10 3 L7 Band 3 (red)

Group 4
11 6 L7 Band7 (SWIR)
12 2 L7 Band 2 (green)
13 26 ASTER Band 6 (SWIR)
14 1 L7 Band 1 (blue)

Group 5
15 35 ASTER Band 5 (SWIR)
16 12 L8 6/7 - clay

Group 6
17 17 L8 Band 4 (red)
18 37 ASTER Band 7 (SWIR)
19 38 ASTER Band 8 (SWIR)
20 43 Total Field Magnetics
21 7 L7 5/7 -clay
22 31 ASTER 4/1 - 
23 39 ASTER Band 9 (SWIR)
24 29 ASTER 4/2

Group 7
25 28 ASTER 4/3
26 15 L8 Band 1b – (blue)
27 16 L8 Band 3 (green)
28 42 ASTER Band 3 (NIR)
29 10 L7 4/3
30 41 ASTER Band 2 (red)



data are better collected during the
night to suppress solar heating effects;
however, northern environments,
although dark for six months of  the
year, are completely snow-covered dur-
ing these winter months, suppressing
thermal signatures from the underlying
rocks.

The Spot-5 data also provided
lower classification results than the
Landsat data. This may also be related
to the lower sun angle on the date of
acquistion (22 August), and also
because of  fewer spectral bands.
Behnia et al. (2012), in another remote
study of  Victoria Island, note that
Landsat-7 data using RCM–MLC pro-

vided a higher classification accuracy
than Spot-5.  They attributed this
result to the higher spectral resolution
of  Landsat, which records reflectance
in the blue and SWIR portions of  the
electromagnetic spectrum.  They also
concluded that the lower spatial resolu-
tion of  Landsat actually acts as a natu-
ral filter by generalizing the surface and
presenting less spectral variability than
the higher spatial resolution of  Spot-5
data.

The addition of  ratios for all
sensors (Landsat-7, Landsat-8, and
Aster) improved overall classification
accuracies for both the (thirteen)
detailed and (seven) generalized litho-

logical classes. Ratios are advantageous
to the classification procedure as they
help to reduce illumination effects
related to topography and, more
importantly, emphasize spectral differ-
ences associated with individual miner-
als and groups of  minerals that help to
identify various lithotypes. In fact, the
best predictor, established through the
RF classifier, was a Landsat-7 band 5/4
ratio (Table 7) designed to detect rocks
with a high ferrous iron content.

Inclusion of  magnetic data
(total field or converted to magnetic
susceptibilty) in the classification
process is also recommended, as it can
help to identify rocks characterized by
either high or low magnetic susceptibil-
ities, as demonstrated in this study and
by Martel et al. (2005), Harris et al.
(2008b, c), and Schetselaar and Ryan
(2008). Gamma ray spectrometry data,
although not used in this study, should
also be included in the classification
process as it records information on
the content of  uranium, thorium and
potassium in rocks at the earth’s sur-
face. These elements are present in
most rock-forming minerals: potassium
is a common constituent in feldspar,
biotite, and muscovite, whereas urani-
um and thorium generally occur in low
concentrations in a wide range of
accessory minerals. Unfortunately, no
gamma ray data were available for the
study area; however, Harris et al.
(2009) and Ford et al. (2008) have
shown that these data are extremely
useful in the classification of  bedrock
types.

The selection of  representa-
tive training areas is obviously a key
factor in the application of  machine
learning algorithms such as classifica-
tion to the mapping of  bedrock or sur-
ficial materials. Even within classes,
spectral variabilty may be present.
Ensemble classification algorithms
such as RCM–MLC and RF are used
to account for variability in training
area signatures by employing bagging
and cross-validation methods (see Har-
ris et al. 2012b). This can assist in iden-
tifying training areas that can be modi-
fied and/or deleted from the classifica-
tion process. Furthermore, these classi-
fication algorithms provide a more
robust estimate of  classification accu-
racies and generate uncertainty metrics
to accompany the classified map. 
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Figure 12. MLC Multiple Classification System (MCS) Majority Classification Map.
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a 
b 

c 

Figure 13. (a) Multiple Classification System (MCS) Classifi-
cation Agreement Map. (b) MCS Agreement Uncertainty
Map. (c) MCS Classification Agreement Map with uncertainty
(class 5 and 6) from the ensemble uncertainty map shown in
b, removed.



Comparing the RCM–MLC
and RF algorithms is difficult because
different datasets were used: for RF, all
43 bands were employed, whereas
RCM–MLC used various subsets of
the 43 bands. Use of  MLC with a
restricted number of  training areas
would result in the Hughes effect (Hugh-
es 1968; Oommen et al. 2008; Alonso
et al. 2011), which describes how clas-
sification accuracy depends on the
number of  training samples. In gener-
al, the separability of  classes (as well as
the number of  statistical parameters
defining the classes) increases with the
number of  dimensions (bands). In
classification, a fixed number of  train-
ing samples, generally proportional to
the number of  bands to be classified,
are used, and at some point the classifi-
cation accuracy can decrease if  the
number of  training samples is insuffi-
cient. High dimensional data are gener-
ally more difficult to work with, as
many bands can increase the noise fac-
tor and hence error factor, requiring
many training samples to be used.
Story and Congalton (1986) suggested
that at least 50 pixels per map class
should be used in the training process,
whereas Jensen (2005) suggested 10n
pixels for each class, where n equals the
number of  bands (channels) used in
the classification. Other researchers
suggest 10 to 30n pixels per class
(Mather 1999; Piper 1999). Inclusion
of  the total number of  input bands
(43) for the RCM–MLC classification
could lead to an overestimation of
accuracy because of  the limited num-
ber of  training areas used in this study
(see Table 1). However, in using
RCM–MLC, the Hughes effect can be
reduced because the iterative random
sampling of  the training dataset (bag-
ging) produces a series of  classifications
as well as independent cross-valida-
tions (see above and Harris et al.
2012b).  RF is also less affected by the
Hughes effect because the bagging process
is used to create, in this case, 100 trees
(classifications) and an equal number
of  validation estimates.  Furthermore,
RF has been shown, in a number of
studies, to outperform other classifiers
(Gislason et al. 2006; Crisci et al. 2012;
Craknell and Reading 2014). In addi-
tion, RF provides a predictive rank for
each input band and is a non-paramet-
ric classifier. In this study, the highest
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Figure 14. Multiple Classification System (MCS) Best Bands Classification Map
using thresholded average rule images (>95%) to reduce uncertainty (see text).

Table 8. Best band data combination for each of  the seven generalized lithological
– surficial classes.

Class Data combination Class accuracy (%)

Carbonates LANDSAT  8 –raw bands 96.2

Evaporites LANDSAT  7 –raw, ratios, mag 98.6

Basalt ASTER – raw, ratios 90.9
LANDSAT 7, raw, ratios, mag 90.7

Diabase LANDSAT 7 – raw ,ratios, mag 90.5

Dolostone LANDSAT 8 – raw, ratios 96.8

Sandstone ASTER- raw, ratios 86.7

Quaternary LANDSAT 8 – raw, ratios 94.9



overall classification accuracy (99%)
was achieved using RF, bearing in mind
that all 43 bands (raw and ratios)
derived from the Landsat, Aster and
Spot data were used in the classifica-
tion experiments. 

In northern terranes where
remotely sensed data are often
acquired at lower sun angles, such as
the Aster data used herein, it is recom-
mended to either topographically cor-
rect remotely sensed data or, in the
present case, to account for illumina-
tion effects associated with topography.
This was accomplished simply by

incorporating a 1:50,000 DEM (Cana-
dian Digital Elevation Data) in which
hillshade maps using the sun azimuth
and elevation values were determined
from the acquisition parameters of
each sensor. The hillshade maps were
then thresholded to mask areas in
shadow and backslope areas that
reflect less energy, both of  which can
add an element of  confusion to the
classification process.

Comparison of  a classified
map derived from even moderate-reso-
lution remotely sensed data with a tra-
dional geologic map is problematic as

the two are constructed using entirely
different processes. Although the geol-
ogy map used here for comparison to
the classified maps did incorporate a
component of  remote sensing (visual
interpretation of  stereo Spot-5
imagery), the map was also based on
detailed field work. Furthermore, the
cognitive processes involved in tradi-
tional map-making, which involves the
incorporation of  process information
and generalization based on field expe-
rience, is more difficult to capture by
machine-learning algorithms. Remote
sensors collect data on a grid cell basis
(30m for Landsat), in which much
spectral heterogeneity is recorded. A
traditional geological map is often a
generalized model of  a geological envi-
ronment in that it presents more
homogeneous classes. The fact that
remotely sensed data records more het-
erogeneous information does not ren-
der the classified map useless; in fact,
just the opposite occurs, as indicated in
this study. The more detailed classifica-
tion (thirteen classes) produced a map
with spectral sub-units within the main
lithological groups.  To create a level
playing field for the comparison, we
generalized both the geological map
and the training areas to seven basic
lithological – surfical classes.  The
majority of  the classification maps
showed some agreement (40 to 50%)
with the generalized geology map.
However, an ensemble MCS classifica-
tion approach, here employing majority
agreement and best band maps, resulted in
higher classification accuracies in
excess of  70% when compared to the
geology map. The trade-off  is that
fewer pixels are classified, but with
more confidence. Furthermore, inclu-
sion of  uncertainty metrics (i.e.
RCM–MLC variabilty, RF probabilty
and ensemble range maps) increases
overall accuracies, again at the expense
of  the number of  pixels classified. The
geologist has the option of  using clas-
sification maps in which all pixels are
classified other than those that have
been purposely masked, or else using a
map that has had fewer pixels classi-
fied, but with less spectral uncertainty.

CONCLUSION
This study has demonstrated that clas-
sification of  remotely sensed optical
data can significantly contribute to the
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Figure 15. The Multiple Classification System (MCS) Combination Map combines
MCS agreement (Fig. 13a), best bands (Fig. 14), and majority classification (Fig. 12)
maps. 



geologic mapping process in a geologi-
cal environment in which the spectral
expression of  rocks is optimal. These
environments tend to occur in Arctic
islands and coastal environments in
Canada’s North.  A map in which all
non-masked pixels are classified or a
map with fewer pixels classified, but
with more spectrally certainty, can be
produced. The maps can provide first-
order geologic information in poorly-
mapped or unmapped areas, as well as
preliminary maps to support and focus
field-based studies.  For example, a
classified map produced from an
ensemble classification in which very
uncertain areas have been removed
(e.g. Fig. 13c) could form the basis of  a
more detailed visual analysis of  various
remotely sensed data (2D and 3D) in a
GIS environment using a heads-up inter-
pretation process and touch-screen
technology (see Harris et al. 2012a). 

Landsat-8 data produced clas-
sification results similar to those of
Landsat-7, which will ensure the reli-
able and continuous use of  the Land-
sat series of  satellites for geological
mapping into the future. The perform-
ance of  Aster data was limited by the
season of  acquisition (low sun angle),
indicating that for Arctic research, mid-
June to mid-August data acquistion is
best for optimal results. It is expected

that Aster would have been more use-
ful if  a July acquistion date could have
been found. Certaintly, the Aster
imagery did classify certain lithotypes
more accurately than did Landsat-7 or
Landsat-8, although the overall per-
formance was inferior.  Aster TIR data
may see only limited applications in
northern environments because of
snow cover and day-time solar heating
biases.  Spot-5 data provides higher
spatial resolution, which is very useful
for detailed visual interpretation, but
has lower spectral resolution, lacking
reflectance information in the blue and
SWIR wavelengths.

For geological classification,
both raw optical data and calculated
ratios should be used to directly focus
on spectral differences related to min-
eralogy, primarily in iron-, clay-, and
carbonate-bearing rocks. Magnetic and
gamma ray spectrometry data, depend-
ing on the geological environment,
should also be incorporated.

Both RCM–MLC and RF pro-
duced high classification accuracies.
The RF algorithm may be preferred, as
other studies indicate that it marginally
outperforms other classification algo-
rithms by 2–10% with respect to classi-
fication accuracies. However, more
research is required to confirm this.
Furthermore, RF does not require nor-

mal distribution of  the training data to
be classified, provides a ranked list of
the best predictors, is less sensitive to
the Hughes effect, and does not overfit
the data.

A new MCS approach, using a
majority classification agreement and best
bands map derived from different
remotely sensed data types, is recom-
mended for other geologic classifica-
tion studies in northern environments.
This requires more data acquisition,
but as shown in this study, results in
higher classification accuracies when
compared to the new geology map.
This MCS classification approach
could be useful for surficial mapping
applications using multiple image
acquisitions (time series) by the same
or different sensors over the northern
summer (mid-June to end of  July).
This time-series approach may prove
useful for capturing biomass and soil
moisture differences that may be help-
ful in the mapping of  surficial materi-
als.
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