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SUMMARY
Virtual globes represent a paradigm
shift for geoscience education.  It is
now possible to explore real world
experiences across the entire Earth, the
Moon, and Mars, and also to combine
multiple 2-D images into one 3-D

image with topography.  Models
viewed in Google Earth® are more
intuitive for visualizing 3-D geological
structures than traditional paper maps
and cross-sections.  Here a student-
constructed geological map and cross-
sections from an introductory field
school are used to illustrate the cre-
ation of  a draped geological map over
topography.  A custom vertical slider
elevates the cross-sections above
topography and a horizontal slider
restores thrust faulting. Models located
in situ in topography are made
queryable via a ‘cut-away’ using the
WxAzygy® transparent interface.

SOMMAIRE
La notion de « globes virtuels » con-
stitue un changement de paradigme
dans le domaine de l’éducation en géo-
science.  Il est maintenant possible de
traiter de la réalité de tous les recoins
de la Terre, de la lune et de Mars, et
aussi de combiner de multiples images
2-D en une image 3-D affichant la
topographie.  Les modèles de Google
Earth® permettent une visualisation 3-
D plus intuitive des structures
géologiques que ne le permettent les
cartes papiers usuelles et les coupes.
Dans la présente, une carte géologique
et une coupe réalisées par un étudiant
d’un cours d’introduction au travail de
terrain sont utilisées pour illustrer la
confection d’une carte géologique
appliquée sur la topographie corre-
spondante.  Un curseur vertical per-
sonnalisé dessine les coupes au-dessus
de la topographie, et un curseur hori-
zontal permet de restaurer les failles de
chevauchement.  Ces modèles ancrés
au droit de la topographie peuvent être
exploiter au moyen d’un écorché pro-
duit par l’interface transparent 
WxAzygy®.

INTRODUCTION TO Google Earth®
MODELS AND VIRTUAL FIELD TRIPS
Google Earth® and other virtual
globes have only been available for a
decade, yet they represent a significant
paradigm shift for geoscience educa-
tion.  Now it is possible for students
(agile and disabled) to explore the
entire Earth, Moon, and Mars.  In
Google Earth®, these students can
also be exposed to real-world type
experiences, rather than a typical
‘canned laboratory’ exercise.  Here a
Google Earth® model is presented
that provides some interactive compo-
nents critical for creating excellent vir-
tual field trips (VFTs, Hurst 1997;
Woerner 1999; Tuthill and Klemm
2002; Arrowsmith et al. 2005). 

As outlined by Mogk (2011),
the novice geology student is impacted
by multiple factors such as distraction
by irrelevant features (Goodwin 1994;
Reynolds et al. 2006), spatial and scale
relations (Wilson 2001, 2002; Montelo
et al. 2004), internal versus external
views (Bryant et al. 1992), and the
affective domain (values, motivations,
emotions, attitudes, etc; Krathwohl et
al. 1973) all of  which cause the first
field experience to be overwhelming.
A VFT is best employed as a supple-
mental introduction to real field experi-
ences (Bellan and Scheurman 2001;
Tuthill and Klemm 2002; Arrowsmith
et al. 2005; Smedley and Higgins 2005)
and could potentially lessen the over-
whelming nature of  first field experi-
ences.  

Virtual globes emerged at the
close of  the last millennium (Bailey
2000).  Gore (1998) strongly endorsed
this technology and predicted that vir-
tual globes would revolutionize spatial
visualization and data analysis for geo-
science research and education.  Earth-
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browser was the first working digital
globe application to appear in 1998,
followed by other ‘first generation’ vir-
tual globes until 2004.  Development
of  the XML-based markup language
‘Keyhole Markup Language’ (KML) by
Keyhole Corporation in the early 2000s
made virtual globes easily extensible.
Google Earth® was released in 2005
as the newly named KML-based geo-
browser (after Google Inc. purchased
Keyhole Inc.).  Google ensured the
success of  Google Earth® by releasing
control of  KML to the Open Geospa-
tial Consortium in 2008, thereby estab-
lishing KML as the standard for inter-
active digital globes.  KML is now the
scripting language for all major virtual
globes such as ESRI’s Arc Explorer,
Bing Maps 3-D (formerly MSN Virtual
Earth), Google Earth®, and NASA’s
World Wind (Wilson et al. 2007, 2008;
Wernecke 2009; Whitmeyer et al. 2010;
De Paor et al. 2010; De Paor and
Whitmeyer 2011).  

Google Earth® capabilities
were greatly expanded with the adop-
tion of  COLLADA (COLLAborative
Design Activity) for 3-D content mod-
elling in 2006 (with version 4), and
Animation in 2007 (with version 5).
COLLADA was originally developed
by Sony Entertainment Corporation
for exchange of  3-D graphics content
(Arnaud and Barnes 2006). It is now
an open standard maintained by
Khronos Group (Khronos Group
2012). Google developed SketchUp
(which it recently sold to Trimble Nav-
igation Inc.) as a user-friendly applica-
tion for creation of  3-D content, such
as buildings. SketchUp version 8 was
used in this paper to create emergent
COLLADA models of  subsurface
structures and to animate COLLADA
models with the Google Earth®
Application Program Interface (API)
and JavaScript (De Paor and Whitmey-
er 2011).  Emergent and animated
COLLADA models are presented here
using the Grotto Creek mapping proj-
ect from an introductory field school
taught at Mount Royal University, Cal-
gary, Alberta, Canada (Fig. 1). 

The Grotto Creek exercise
(Fig. 2) was initially created for educa-
tion, to guide novice geology students
while developing the necessary spatial
cognitive abilities during their voyage
toward becoming professional geolo-

gists.  Novice students and non-
professionals typically experience diffi-
culties when attempting to visualize 3-
D geological structures with paper geo-
logic maps and cross-sections (Piburn
et al. 2002; Kastens and Ishikawa
2006).  As emphasized by Whitmeyer
et al. (2010), interactive geological
maps in Google Earth® communicate
3-D geological data more intuitively
than the traditional format of  separate

paper maps and cross-sections.  Drap-
ing geological maps over topography
combined with creating emergent
cross-sections permits students to
remove much of  the cognitive barrier
involved in trying to piece together 2-
D paper maps and paper cross-
sections.  

Using the method of  Dorde-
vic (in press), multiple slider controls
can be created for the Google Earth®

Figure 1. Location of  Grotto Creek map area in Google Earth®.  This map area
(coloured portion draped over topography) is in the McConnell Thrust of  the
Canadian Cordillera Front Ranges, 10 km east of  Canmore, Alberta, near the
Trans-Canada Highway (yellow line).  The body of  water in the south-central 
portion of  this figure is the Spray Lakes Reservoir (©2012 Google, GeoEye, Terra-
Metrics, and Cnes/Spot Image).

Figure 2. The Grotto Creek geological map with Fell’s cross-sections (Fell 2008)
in Google Earth®.  Lac Des Arcs is the body of  water in the middle of  the map
area.  This illustrates one of  the strengths of  Google Earth® models, the ability to
combine different 2-D figures into one 3-D image that includes topography.  As
emphasized by Whitmeyer et al. (2010), these interactive maps should be more
intuitive for inexperienced people to visualize 3-D geological structures than tradi-
tional 2-D paper maps and cross-sections (©2012 Google, GeoEye, TerraMetrics,
and Cnes/Spot Image).
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API that are controlled using
JavaScript code.  Here a vertical slider
was used to create emergent cross-sec-
tions, while a horizontal slider recreates
the formation of  the faults and folds
observed in the field area.  In a further
innovation, WxAnalyst’s WxAzygy®
Transparent Interface (Shipley et al.
2009, 2010) was used to create a
queryable ‘cut-away’ cross-section into
the topography.  The main purpose of
this paper is to highlight the practical
and accessible nature of  Google
Earth® when combined with
SketchUp, COLLADA, and WxAzy-
gy®, and the ability to create engaging
3-D interactive models from geological
maps and cross-sections constructed
by students or professionals.

THE GROTTO CREEK MAPPING
PROJECT
The Grotto Creek map area is located
in the McConnell Thrust Sheet in the
Front Ranges of  the Canadian
Cordillera, near the Trans-Canada
Highway between Calgary and Banff,
Alberta (Fig. 1).   Devonian–Mississip-
pian carbonate–clastic strata were
deposited on the western margin of
ancestral North America and then
repeated by folding and faulting along
the Lac des Arcs Thrust Fault. The
>440 m thick Devonian to Carbonifer-
ous stratigraphic sequence in the Grot-
to Creek map area progresses from the
shelf  margin wedge systems that
onlapped bathymetric highs in Alberta
during a sea-level rise (Southesk/Alexo

and Palliser formations, Fig. 3A, B), to
the transgressive systems tract of  the
Exshaw Formation (Caplan and Bustin
1996, 1998).  This was accompanied by
eutrophication of  surface waters and
reduced carbonate accumulation rates
with the destruction of  the carbonate
platform due to changes in the paleo-
ceangraphic circulation marked by the
black organic-rich shales of  the lower
member of  the Exshaw Formation.
The bioturbated shelf  siltstones and
cross-stratified nearshore marine sand-
stones of  the upper member of  the
Exshaw Formation record an abrupt
relative sea-level fall (Caplan and
Bustin 1996, 1998) that continued
through to the development of  a sec-
ond carbonate platform represented by
the Banff  and Livingstone formations.

This mapping project was
chosen because the five mapped for-
mations are important to the local
petroleum industry in the Western
Canadian Sedimentary Basin.  For
example, the Exshaw Formation (Allan
and Creaney 1991; Barson et al. 2000;
Manzano-Kareah et al. 2004 and multi-
ple references therein) is an important
source rock for many petroleum reser-
voirs in Western Canada.  The clean
and pure limestone of  the Palliser For-
mation is quarried in the map area for
cement.  Karst topography within the
Livingstone Formation formed the
Rat’s Nest Cave system (Yonge 2001)
in Grotto Mountain.  The cliff-forming
limestone of  the Palliser and Living-
stone formations form the spectacular

landscapes that draw millions of
tourists to our geological backyard.
Access into this area is excellent with
road-cuts along Highway 1A and pop-
ular hiking trails up the two Grotto
creeks.  West Grotto Creek follows one
of  the syncline hinge lines, while East
Grotto Creek cuts up the trace of  a
small thrust fault. 

Jonathan Fell (Fell 2008) con-
structed the geological map and the
two shorter cross-sections used here
(Fig. 2), during his introductory field
school at Mount Royal University (Cal-
gary, Alberta).  As per many Canadian
B. Sc. geology major programs, the
introductory field school is taught for
two weeks during the end of  summer
before the second year geology cours-
es.  The Grotto Creek field area repre-
sents the final four-day mapping proj-
ect of  the field school.  

Four days were spent mapping
the toe of  Grotto Mountain, west and
east Grotto creeks and the road-cuts
along Highway 1A in the western por-
tion of  the field area (see Fig. 4 for
geographic features mentioned
throughout this paper).  Two stops
were made at outcrops along the
southern side of  the Trans-Canada
Highway to include those on the map
and to examine the structural features
of  the mapping area from a distance.
A stratigraphic column was measured
along Highway 1A road-cuts in the
eastern portion of  the map area earlier
in the field school.  Two days were
spent in Jura Creek (2.7 km northwest

Figure 3. Palliser Formation limestone cliffs in Google Earth®, southern portion of  map area.  (A)  Cliff-forming limestones
of  the Palliser Formation (green) occur at the steepest portion of  this range, the slope shallows as the contact with the
Southesk/ Alexo Formation dolostones (purple) is crossed toward the bottom of  this range.  (B)  Frequently, the steeper Pallis-
er Formation outcrops are not vegetated, whereas the less steep outcrops of  Southesk/Alexo Formation are vegetated.  Unfor-
tunately the image quality in Google Earth® at this location is blurry (©2012 Google, GeoEye, TerraMetrics, and Cnes/Spot
Image).

A B
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of  the mapping area) mapping the top
and bottom contacts of  the Palliser
and Exshaw formations.  Jura Creek is
the type locality for the Exshaw For-
mation (MacQueen and Sandberg
1970; Barson et al. 2000) which is
recessive and eroded away within the
Grotto Creek area.  To complete the
map and to practice structural contour-
ing, the contacts were structurally 
contoured north and south of  the out-
crops.

Due to time constraints, the
region between the East Grotto Creek
thrust fault and the Lac des Arcs thrust

fault was not visited (Fig. 4).  To com-
plete the geological map, the students
were asked to extrapolate the geology
from the final mapping project area
(western portion) to the eastern road-
cuts.  So, while this geological map
does include the anticline–syncline pair
(West Grotto Creek) and the small
thrust fault (East Grotto Creek) added
by Simony (in Spratt et al. 1995) to the
McMechan (1995) and Price (1970)
geological maps for this region, the
portion between the two thrust faults
does not correspond to the work of
Price (1970), McMechan (1995) and

Simony (in Spratt et al. 1995) because
the students were not aware of  this
work.  These differences are not the
focus of  this paper, rather we aim to
highlight how student mapping can be
enhanced and presented in an engaging
3-D interactive setting using Google
Earth®, COLLADA and WxAzygy®.

Robyn Thompson (Instruc-
tional assistant at Mount Royal Univer-
sity), digitized Fell’s map and cross-
sections (Fell 2008), and used these to
create an emergent model and terrain
overlay using SketchUp and KML
code.  Thompson used an early version
of  the Grotto Creek model to create a
Youtube video (Thompson 2011) illus-
trating the difference between the >3
km apparent map thickness of  the
green Palliser Formation limestone and
the ~250 m true thickness observed in
the cross-sections (Fig. 5A, B).  This
illustrates one powerful capacity for
these Google Earth® models for edu-
cation purposes.

This Grotto Creek Google
Earth® model will be used in intro-
ductory geology courses to illustrate
the ‘rule of  Vs’ and why inclined con-
tacts are not always straight lines.  The
terrain overlay combined with the
topography in Google Earth® greatly
enhances what may be difficult for
some students to visualize with only
the topographic contours on topo-
graphic maps.  Thompson’s Youtube
video (Thompson 2011) will be used in
the introductory field school, and
structural geology courses to graphical-
ly illustrate the difference between true

Figure 4. Features mentioned in paper.  The red lines mark West and East Grotto
creeks, which are part of  the Grotto Creek hiking trails.  PQ is the quarry where
Palliser Formation limestone is currently being mined.  AQ is the now abandoned
quarry where the Southesk/Alexo Formation dolostones were exposed.  BQ is the
now abandoned quarry where the Banff  Formation was once quarried.  JC is Jura
Creek, the type locality for the Exshaw Formation.  Under RNC is the Rat’s Nest
Cave system in Grotto Mountain.  ERC is the eastern road-cuts, WRC the western
road-cuts (©2012 Google, GeoEye, TerraMetrics, and Cnes/Spot Image).

Figure 5. This figure is useful for educational purposes when explaining the difference between true thickness (visible in cross-
section) and apparent thickness (visible in map view; as per Thompson’s Youtube video: (Thompson 2011)). (A)  The thick
orange arrow represents the >3 km of  apparent thickness of  the green Palliser Formation limestone (©2012 Google, GeoEye,
TerraMetrics, and Cnes/Spot Image). (B)  In cross-section, the black arrow represents the true thickness of  250 m.  Also in this
view, one can see the folding and faulting that explains the much larger apparent thickness in map view.

A B
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and apparent thickness.  The vertical
and horizontal sliders will be used in
these courses to illustrate how folds
and faults can develop and how to
construct proper cross-sections. Both
concepts can be troublesome for
novice students.

Perhaps the most powerful
application of  Google Earth® models
for the geosciences is in the creation of
interactive components to create effec-
tive virtual field trips (VFTs; Hurst
1997; Woerner 1999; Tuthill and
Klemm 2002; Arrowsmith et al. 2005).
Most geology students are completely
overwhelmed during the first day of
introductory field schools due to fac-
tors listed above – distraction by irrele-
vant features, spatial and scale rela-
tions, internal versus external views,
and the affective domain.  Student
responses in Arrowsmith et al. (2005)
support the conclusion that VFTs
assist students in preparing for field-
work and that most students felt more
comfortable during the real field expe-
rience after being exposed to a VFT.
These same students also mentioned
that VFTs should not replace real field
experiences.  The Grotto Creek
Google Earth® model presented here
represents the first stage of  creating a
much larger VFT through the Canadi-
an Cordillera.

EMERGENT COLLADA MODELS AND
STRUCTURAL RECONSTRUCTIONS

Stage Design for the Grotto Creek
Model
The senior author created the longer
cross-section (Fig. 6) and stages for the
structural emergent model (Fig. 7)
from Fell’s field school geological map
(Fell 2008). As emphasized by Enkin et
al. (1997, 2000), extensive mapping and
structural analysis has outlined the
architecture of  the Front Ranges
(Clark 1949; Bally et al. 1966;
Dahlstrom 1970; Price 1970; Price and
Mountjoy 1970; Monger and Price
1979; Price 1994; McMechan 1995;
Simony in Spratt et al. 1995), however
the timing, mechanism and environ-
ment of  Cordilleran deformation
remain incompletely understood.
Wheeler et al. (1974) proposed that
approximately 140 km of  shortening in
the Front Ranges occurred at a rate of
~2 mm/yr between Early Cretaceous

(136–100 Ma) and Early Eocene
(54–49 Ma).  A rate of  ~3 mm/yr for
the 30 km of  movement was also esti-
mated for along the McConnell Thrust
between early Campanian to pre-
Palaeocene.  The main component of
movement along the thrust faults in
the field area is proposed to have
occurred between stages D and E (Fig.
7).

Dahlstrom (1970) proposed
the ‘piggyback’ model for the Foreland
Belt of  the Canadian Cordillera, where
main thrust faults develop ‘in
sequence’ from the hinterland toward
the foreland and from top to bottom
of  the accretionary wedge (Price 2001).
In the Front Ranges of  the Foreland
Belt, there are four main SW-dipping,
NW-striking thrust sheets that are,
from west (oldest) to east (youngest):
Bourgeau, Sulphur Mountain, Rundle,
and McConnell thrust sheets.  

Typically, each thrust sheet has
resistant Paleozoic carbonates overlain
by recessive Triassic to Middle Jurassic
marine shales and siltstones, capped
locally by Early Jurassic to Cretaceous
continental, siliciclastic deposits (Price
2001).  The current field area is located
in the easternmost McConnell Thrust
Sheet.  The Late Devonian to Early
Carboniferous formations are repeated
by the Lac des Arcs Thrust Fault in the
eastern portion of  the map area.

The Foreland Belt of  the
Canadian Cordillera is a typical thrust
and fold belt (Stockmal et al. 2007)

with ‘thin-skinned’ geometry where the
undeformed Paleoproterozoic crys-
talline basement extends southwest-
ward, from the Western Canada Sedi-
mentary Basin beneath the Canadian
Rockies beyond the Rocky Mountain
Trench (Shaw 1963; Bally et al. 1966;
Keating 1966; Price and Mountjoy
1970; Price 1981; Cook et al. 1988).
The SW-dipping, listric faults, which
flatten with depth and merge into a
regional décollement above the base-
ment, are the dominant structures in
the Foreland Belt (Bally et al. 1966).
For the purpose of  the demonstration
presented here, only the strata
observed and measured during the
Mount Royal University introductory
field school were included in the cross-
sections, however the faults are implied
to be listric as suggested by Bally et al.
(1966).

Dahlstrom (1970) defined a
‘Foothills family’ as four structural fea-
tures that include: i) late normal faults
(frequently listric), ii) tear faults, iii)
low-angle thrust faults, and iv) concen-
tric folds underlain by a décollement.
The décollement and the associated
room problems with concentric folds
will not be observed in the cross-sec-
tions because the cross-sections do not
extend below the Southesk and Alexo
undivided formations.  Tear faults were
not observed in the map area, but low-
angle thrust faults were observed.

Figure 6. Grotto Creek geological map with long cross-section line used for the
structural reconstruction (yellow line) in Figure 7 (©2012 Google, GeoEye, Terra-
Metrics, and Cnes/Spot Image).
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Creation of COLLADA Models
GIMP (The GNU Image Manipulation
Program; freely distributed software at
[www.gimp.org]) was used to retouch
the jpeg cross-section files (this is a

free alternative to the commercial Pho-
toshop® application).  An alpha layer
was added to enable transparency of
the cross-section background.  The
files were imported into SketchUp,

where they were scaled and aligned to
a reference point.  This was chosen
where the cross-section line crossed
the Lac Des Arcs Thrust Fault.  This
reference point provides a common
latitude, longitude, and altitude for all
cross-sections used in the restoration.
The cross-sections were then exported
as 3-D models in COLLADA format.
Sliders were constructed to elevate and
animate the motion of  the restored
cross-sections, using interactive screen
overlays, JavaScript, and the Google
Earth® API (described in Dordevic, in
press).  Moving the vertical slider will
elevate the model from an anchor
point, which is the point of  origin in
SketchUp at the moment of  export
(here at 1000 m elevation).  Animation
is created through the use of  the hori-
zontal slider, which loads in different
stages of  the Grotto mapping area
structural reconstruction as textures
applied to the side of  the model.  Just
as with cartoon animation, a higher
number of  stages would smooth out
this animation.

Adding Contours to Google Earth®
Contours are important for map inter-
pretation and are built into Google
Maps but strangely not into Google
Earth®. We devised four methods for
adding contours to the Google Earth®
terrain.  

In the first method (Fig. 8A) a
screen shot of  the region of  interest is
taken in Google Maps with its terrain
feature switched on. This is imported
into Google Earth® as a ground over-
lay and draped over the matching
topography. This works well because
Google Maps and Google Earth®
share the same DEM (if  a map from a
different source were draped onto the
Google Earth® terrain, the resultant
contour lines might be far from hori-
zontal). A disadvantage of  this method
is that paths or polygons drawn with
Google Earth® tools will be covered
by the ground overlay image (paths
and polygons cannot be given a higher
KML draw order). However, if  the
transparency of  the image is adjusted,
map features beneath become visible.
This approach is the fastest and it pro-
duces acceptable visual results if  the
region of  interest is not too large – on
the order of  10 km2 – otherwise, the
contours become too dense and the

Figure 7. Five stages of  structural reconstruction.  Stage (A) represents the origi-
nal horizontal sediments.  By Stage (B), the beds were warped due to the change to
a convergent setting off  the west coast of  North America.  With further folding
and the beginning of  faulting, movement along the East Grotto Creek Thrust Fault
cut through the Southesk/Alexo and Palliser formations – Stage (C).  By Stage (D),
most of  the movement along the thrust faults was progressing at rates between 2
and 3 mm/yr.  What is seen today is represented by Stage (E).

A

B

C

D

E
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image file becomes very large.
The second method (Fig. 8B)

involves manually tracing the contours
using the Google Earth® ‘Add Path’
tool.  Here, the first step is to create a
rectangular polygon similar in size to
the region of  interest.  When the alti-
tude mode of  this rectangle is set to
‘absolute’ (the height is 1800 m in Fig.
8B) the contact with topography can
be seen (indicated with the white bold
line) and traced out by hand. This
process is then repeated for all the
desired altitudes.

For the third method, the
DEM from Google Earth® is import-
ed into SketchUp using its ‘Get Cur-
rent View’ tool (Fig. 8C).  Once the
DEM is imported, by intersecting it
with a set of  equally spaced horizontal
planes, contours can be produced and
exported back into Google Earth® as
a 3-D model.  Two disadvantages of

this approach include the limit of  ~4
km2 for the area that can be imported
and the large file size.

The fourth method (Fig. 8D)
is a derivative of  the second method.
Instead of  tracing the intersection of
the rectangular polygons with the
DEM, the rectangles are made 90%
transparent (10% opaque) and stacked
by copying them while increasing their
altitudes.  Then a solid colour base rec-
tangle is clamped to the ground under
this stack.  Here the base colour is blue
and the altitude ascends from blue
toward white because the base layer is
covered with more rectangular planes
at each elevation. This method can be
completed fairly quickly and can
extend over large regions (subject to
the effect of  Earth’s curvature).

Opportunities Provided by 
COLLADA Modelling
The above discussion demonstrates the
potential for Google Earth® to be
used for visualizing complex geologic
structures and processes.  Additional
steps can be taken to show under-
ground geologic structures in situ
(meaning in their original locations) as
shown in Figure 9. These KML objects
were created using image processing
tools to 1) capture a surface image tile,
and 2) remove sections of  that tile
which would obstruct the user’s view
of  the cross-sections.  In version 5 of
the Google Earth® desktop applica-
tion, surface tiles are made transparent
by highlighting ‘Primary Database’ in
the Layers sidebar and then moving
the transparency slider all the way to
the left (see ‘A’ in Figure 10). In
Google Earth® version 6.2, the pri-
mary database is always opaque;

Figure 8. (A) Contours imported as ground overlay from Google Maps terrain snapshot into Google Earth®.  Transparency is
set at 50%. (B) Contours (thick white line) constructed by manually tracing out the intersection of  an elevated rectangle (blue
plane) with the DEM. (C) Contours drawn in SketchUp by intersecting an imported DEM with parallel horizontal planes. (D) A
stack of  transparent rectangular planes over a solid blue basal plane which is clamped to the ground (©2012 Google, GeoEye,
TerraMetrics, and Cnes/Spot Image).

A B

C D
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instead the Radar item in the Weather
Layer must be made transparent. The
cut-away tile is reinserted as a ground
overlay and is draped on the terrain.
An obvious next step would use the
line drawn along the surface (the yel-
low line in Fig. 9) to define the cross-
section(s) and perform the surface
image tile cut-away. The image tile cut
is also a split, where the two resulting
sections of  the ground overlay can be
used to view the cross-sections in situ
from opposing directions.

Now that the cross-sections
have been established in situ, we can
apply WxAnalyst’s WxAzygy® Tools to
interrogate the cross-sections as shown
in Figure 10. This add-on is available
(WxAnalyst 2012; Shipley 2012a) for
Google Earth® versions running on
Microsoft Windows which supports
the GE COM API. WxAnalyst’s
WxAzygy® Transparent Interface
(Shipley et al. 2009, 2010) interprets
user mouse clicks on Google Earth®
to calculate the corresponding position
of  that click on a COLLADA surface.
The user selects the ‘focus’ COLLA-
DA layer that is to be interrogated then
clicks on that COLLADA surface to
obtain the coordinates of  the point
selected on that surface. This method
uses the GE COM API to establish the
user’s Point Of  View (POV) in Google
Earth®, so that the resulting coordi-
nates are independent of  Google
Earth® pan, zoom, rotation, or tilt.
The tool also provides a visualization
of  the COLLADA models using icons
and lines which assists the user in iden-
tifying the layer that has been selected.
The example in Figure 10 shows layer
KB_B in situ selected as the Focus
Layer with the geoCursor tool in COL-
LADA triangle [p0,p1,p2].  WxAna-
lyst’s WxAzygy® interface shows the
results of  the click in the
Southesk/Alexo stratum at a height of
1000 m above the Earth Geoid, which
combined with model displacement of
200 m at that location corresponds to
a depth of  approximately 200 m below
the surface. The interface also provides
the coordinates of  the point on the
draped image [i=2056, j=467] and its
colour at that point in hexidecimal
[A=80h, R=ABh, G=39h, B=93h]. An
‘External’ command is also visible in
the cursor for access to additional
functions defined by the COLLADA

Figure 9. Cross-sections in situ, meaning that the subterranean structures are
shown in their original locations. In this case, the Google Earth® primary database
is removed from view and a ‘cut-away’ surface tile is inserted in its place as a
<GroundOverlay> with terrain exaggeration set to one. The ‘cut-away’ can be
achieved automatically using the line (yellow) which indicates the location of  these
cross-sections along the surface (©2012 Google, GeoEye, TerraMetrics, and
Cnes/Spot Image).

Figure 10. WxAzygy® Tools operating in 3-D on the selected COLLADA cross-
section.  The WxAzygy® interface provides the ability to ‘point and click’ on a
COLLADA surface without leaving Google Earth®. This add-on uses the GE
COM API to interpret a user click event on the GE surface as an intersection with
a COLLADA model along the user’s line of  sight. Note that the coordinates of  the
selected point provide the real world location {long, lat} and height {metres}
above the geoid, which, in this example, is below ground level.  The ability to
remove the Primary Database (A) is currently supported only in Google Earth®
5.x and 6.0. In version 6.2, the Radar item in the Weather folder must be made
transparent. User highlights the COLLADA surface (B), then selects that surface as
the Focus Layer (C) and uses the geoCursor (D) to click on that surface (©2012
Google, GeoEye, TerraMetrics, and Cnes/Spot Image).
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model, as discussed in the WxAzygy®
User Manual (WxAnalyst 2010; Shipley
2012b, c, d, e, and f).

The WxAzygy® Transparent
Interface was developed by WxAnalyst
under NASA SBIR Phase 1 funding by
the NASA Langley Research Center.
Phase 3 funding was subsequently pro-
vided by NOAA’s National Climatic
Data Center (NCDC) to provide a
freeware version of  the tools online
(WxAnalyst 2012; Shipley 2012a). As
of  this publication, the GE COM API
is available in GE versions 5.x through
6.2 for Microsoft Windows. Google
has announced that the GE COM API
has been deprecated and may no
longer be supported.  Additional func-
tions developed beyond the freeware
version of  the tools include the ability
to edit COLLADA models, to draw
freehand on COLLADA model sur-
faces, and to change colours of  the
images draped on the COLLADA
models, with all operations performed
in situ without leaving Google Earth®
(Shipley 2012a, b, c, d, and e for more
detailed user instructions).  

DISCUSSION
The ultimate goal for future Google
Earth® models expanding upon the
Grotto Creek model presented here is
to create a series of  3-D interactive
VFTs through the Canadian Cordillera.
As mentioned by Whitmeyer et al.
(2010), these interactive Google
Earth® geological maps are more intu-
itive for non-professionals than tradi-
tional paper maps and cross-sections.
It is also hoped that VFTs employed as
a supplemental introduction to real
field experiences will greatly decrease
the overwhelming nature of  first field
experiences (as summarized in Mogk,
2011).  In the future, this pilot Google
Earth® model will be expanded to
include the extensive mapping and
structural analysis outlined by Clark
(1949), Balley et al. (1966), Price
(1970), Dahlstrom (1970), Price and
Mountjoy (1970), Monger and Price
(1979), Price (1994), McMechan
(1995), and Simony in Spratt et al.
(1995).

Google Earth® and SketchUp
were used because they are well inte-
grated with each other, supported by
multiple platforms, relatively simple to
use, widely available, and free.  For

most geosciences tasks, SketchUp is
sufficiently powerful; however it can-
not wrap a texture around a sphere or
draw a line on a curved surface.  There
are free Ruby plug-ins available for
SketchUp that enable these tasks.
Other software is available that could
create similar models to the one pre-
sented here, such as Gplates from
Earthbyte, Layerscape from Microsoft,
Move software from Midland Valley,
NASA World Wind, GEON, Open
Topography, etc. SketchUp was used
because the others are either not free,
not cross platform, or have a steep
learning curve. However, with the sale
of  SketchUp to Trimble Navigation
Inc., the future of  free SketchUp is
unclear.

Custom sliders were created
using COLLADA, JavaScript, and
Google Earth® APIs.  Once again,
these were used because they are well
integrated, supported by multiple plat-
forms, relatively simple to use, widely
available, and free.  While there are
many other possibilities for creating 
3-D models such as LightWave 3-D,
Maya, 3ds Max, many of  these are
heavy weight modelling applications
with steep learning curves that would
be underused for geoscience model-
ling.

Finally, Google Earth® Layers
were adjusted and manipulated using
WxAzygy® to create a queryable ’cut-
away’ transparent view of  in situ geolo-
gy.  One powerful application of
WxAzygy® is that it provides a con-
venient platform for creating COLLA-
DA and KML directly in Google
Earth®.  Unfortunately, Google
Earth® recently announced that it will
no longer support the GE COM API,
which makes the creation of  transpar-
ent tiles much more difficult.

CONCLUSIONS
Google Earth® and other virtual
globes present excellent media for
analysis of  surface data such as geolog-
ical maps draped over topography.
The addition of  Google Earth® API,
KML, and COLLADA has greatly
enhanced the 3-D visualization capaci-
ty for Google Earth® models.  COL-
LADA models retain azimuthal orien-
tations (unlike placemark icons), while
KML permits users to add custom data
in a variety of  formats, and the Google

Earth® API combined with JavaScript
enables users to manipulate COLLA-
DA model behaviour (De Paor and
Whitmeyer 2011). 

Another significant application
for Google Earth® models is the abili-
ty to immediately ‘fly and explore’ fea-
tures embedded within the text of
papers such as this.  Regardless of  the
potential for assisting students in
acquiring the necessary spatial cogni-
tive skills during their voyage from
novice student to professional geolo-
gist, most people are engaged by this
incredible technology. 

Further Google Earth® appli-
cations introduced here include the use
of  vertical sliders to create emergent
cross-sections capable of  sliding
through topography, horizontal sliders
that reconstruct a structural recon-
struction model, and queryable ‘cut-
away’ cross-sections embedded into
topography.  
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