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Abstract

In a graphG = (V, E), an identifying code ofG (resp. a locating-dominating code ofG) is a subset of verticesC ⊆ V

such thatN [v]∩C 6= ∅ for all v ∈ V , andN [u] ∩C 6= N [v]∩C for all u 6= v, u, v ∈ V (resp.u, v ∈ V r C), where
N [u] denotes the closed neighbourhood ofv, that isN [u] = N(u) ∪ {u}. These codes model fault-detection problems
in multiprocessor systems and are also used for designing location-detection schemes in wireless sensor networks. We
give here simple reductions which improve results of the paper [I. Charon, O. Hudry, A. Lobstein,Minimizing the Size
of an Identifying or Locating-Dominating Code in a Graph is NP-hard, Theoretical Computer Science 290(3) (2003),
2109–2120], and we show that minimizing the size of an identifying code or a locating-dominating code in a graph is
APX-hard, even when restricted to graphs of bounded degree.Additionally, we give approximation algorithms for both
problems with approximation ratioO(ln |V |) for general graphs andO(1) in the case where the degree of the graph is
bounded by a constant.

Key words: approximation algorithms, approximation hardness, identifying codes, locating-dominating codes, fault
tolerance, domination problems, combinatorial optimization, graph algorithms.

1. Introduction

Let G = (V, E) be a simple, non-oriented graph,
and for allv ∈ V let N(v) denote the neighbourhood
of v, and letN [v] denote theclosed neighbourhoodof
v, that is :N [v] = N(v) ∪ {v}. A subset of vertices
D ⊆ V is called adominating setof G if and only
if we haveN [v] ∩ D 6= ∅ for all v ∈ V . A subset of
verticesDt ⊆ V is called atotal dominating setof G

if and only if we haveN(v)∩Dt 6= ∅ for all v ∈ V . A
subset of verticesC ⊆ V is called anidentifying code
of G if and only if it is a dominating set ofG such that
N [u]∩C 6= N [v]∩C for all u 6= v, u, v ∈ V . A subset
of verticesDℓ ⊆ V is called alocating-dominatingcode
of G if and only if it is a dominating set ofG such that

Email: Sylvain Gravier [Sylvain.Gravier@ujf-grenoble.fr],
Ralf Klasing [ralf.klasing@labri.fr], Julien Moncel
[julien.moncel@inpg.fr].

N [u] ∩ Dℓ 6= N [v] ∩ Dℓ for all u 6= v, u, v ∈ V r Dℓ.

If X is a locating-dominating or an identifying code
of G, we usually denoteI(v, X) = N [v]∩X , which is
called theidentifying setof vertexv. Two verticesu and
v such thatI(u, X) 6= I(v, X) are said to beseparated
by X , and a vertexv such thatI(v, X) 6= ∅ is said to
becoveredby X .

Let us calltwinstwo verticesu 6= v such thatN [u] =
N [v]. A dominating set and a locating-dominating code
always exist (take simplyD = Dℓ = V ), but an iden-
tifying code exists inG if and only if G has no twins.
Indeed, ifu andv are twins thenN [u]∩C = N [v]∩C

for any subset of verticesC ⊆ V , andG has no iden-
tifying code; and ifG has no twins thenC = V is a
(trivial) identifying code ofG. A total dominating set
exists if and only if the graph has no isolated vertices,
that is to say every vertex has at least one neighbour.

c© 2008 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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The usual optimization problem associated with
dominating sets (resp. total dominating sets, identifying
codes, locating-dominating codes) is that of minimizing
the cardinality of the respective set in a given graph.
In this paper, we are interested in identifying codes
and locating-dominating codes in twin-free graphs. It
is known [3] that finding the minimum cardinality of
an identifying code or a locating-dominating code in a
graph is NP-hard.

In this paper, we derive approximation algorithms for
identifying codes (Theorem 5) and locating-dominating
codes (see Theorem 9). We also show that minimizing
the size of a locating-dominating code is APX-hard,
even when restricted to graphs of bounded degree (The-
orems 6 and 7). We also derive similar results for iden-
tifying codes (see Theorems 3 and 4), and, as interme-
diate results, for total dominating sets (see Theorems 1
and 2). For graphs of bounded degree, we show that
both problems are in APX.

Identifying and locating-dominating codes model
fault-detection problems in multiprocessor systems
[4,6]. Identifying codes are also used to devise indoor
location-detection schemes using wireless sensor net-
works [7,8]. In this last application, mobile entities have
to be located in an environment equipped with a net-
work of sensors. Each entity permanently emits a signal
which identifies it uniquely. The sensors are considered
to deliver a binary information: a given entity is either
inside or outside the range of a given sensor. Thus, each
sensor dynamically knows which entities are inside its
range (but no information is delivered about, say, its
Euclidean distance to the sensor). The set of sensors
induces then a partition of the environment into a (fi-
nite) number of subregions, according to places where
ranges of sensors overlap. If the sensors are arranged
so that they form an identifying code of the underlying
graph, then each entity can be uniquely located in the
(discretized) environment at any time. The precision of
such a system is greater than the one consisting of just
arranging the sensors into a dominating set.

The paper is structured as follows : the next section
fixes some notations, Section 3. discusses the approx-
imability of minimizing the size of an identifying code
in a graph, Section 4. discusses the approximability of
minimizing the size of a locating-dominating code in a
graph, and we conclude this paper in Section 5.

2. Preliminaries

Let us define formally the optimization problems we
will consider in the rest of the paper.

M IN SET COVER

Input :A family F of subsets of a ground
setS.
Output : The minimum cardinality of a
subsetC ⊆ F such that every point ofS
is contained in at least one set ofC.

M IN k-SET COVER

Input :A family F of subsets of a ground
setS such that each element ofF is of
cardinality at mostk.
Output : The minimum cardinality of a
subsetC ⊆ F such that every point ofS
is contained in at least one set ofC.

M IN DOM SET

Input : A graphG.
Output : The minimum cardinality of a
dominating setD of G.

M IN TOT DOM SET

Input :A graphG having no isolated ver-
tices.
Output : The minimum cardinality of a
total dominating setDt of G.

M IN ID CODE

Input : A graphG having no twins.
Output :The minimum cardinality of an
identifying codeC of G.

M IN LOC DOM CODE

Input : A graphG.
Output : The minimum cardinality of a
locating-dominating codeDℓ of G.

We will also consider versions of these problems
where the graphG will have a bounded degreeB ≥ 1,
which will be denoted NAME-OF-THE-PROBLEM–B,
for instance:

M IN DOM SET–B

Input : A graphG having maximum de-
gree bounded byB.
Output : The minimum cardinality of a
dominating setD of G.
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In a graphG having no twins and no isolated vertices,
D will denote a dominating set ofG, Dℓ will denote a
locating-dominating code ofG, Dt will denote a total
dominating set ofG, andC will denote an identifying
code ofG. We usually denote an optimal set with the
superscript∗, e.g.C∗ will denote an identifying code
of G of minimum cardinality.

We recall the notion of L-reduction (see e.g. [2]).
Given two optimization problemsF andG and a poly-
nomial transformationf from instances ofF to in-
stances ofG, we say thatf is anL-reductionif there are
positive constantsα andβ such that for every instance
x of F

(1) optG(f(x)) ≤ α · optF (x),
(2) for every feasible solutiony of f(x) with objective

value mG(f(x), y) = c2 we can in polynomial
time find a solutiony′ of x with mF (x, y′) = c1

such that|optF (x)− c1| ≤ β · |optG(f(x))− c2|.

To show the APX-hardness of a problemP , it is
enough to show that there is an L-reduction from some
APX-hard problem toP (see e.g. [2]).

3. Identifying codes

3.1. APX-hardness of minimizing the size of an iden-
tifying code

We use an L-reduction from MIN DOM SET–3 to-
wards MIN TOT DOM SET–5, and then an L-reduction
from MIN TOT DOM SET–5 towards MIN ID CODE–8.

Theorem 1 The problemM IN TOT DOM SET–B is
APX-hard for allB ≥ 5.

Proof : We describe an L-reduction from MIN DOM

SET–3 to MIN TOT DOM SET–5. LetG be a graph on
n vertices having maximum degree less than or equal
to 3. Without loss of generality, we may assume thatG

has no isolated vertices, that is to say, each vertex has
at least one neighbour. FromG we construct a graph on
5n verticesG′ by connecting the endpoints of a path
axbxcxdx to each vertexx of G (see Figure 1).

Note thatG′ has maximum degree bounded by 5.
Given a dominating setD of G, we construct a total
dominating setDt of G′ as follows:

• Dt containsD,

Fig. 1. Construction ofG′ from G. To each vertexx corre-
sponds a pathaxbxcxdx whose endpointsax anddx are both
connected tox.

• for any vertexx of G which is not inD, the vertices
bx andcx belong toDt (see Figure 2),

• for any vertexx of D, the verticesax anddx belong
to Dt (see Figure 3),

• no other vertices belong toDt.

It is straightforward to check that ifD is a dominating
set of G, thenDt is a total dominating set ofG′, of
cardinality|D| + 2n. Hence

|D∗

t | ≤ |Dt| = |D| + 2n,

and since this is true for any dominating setD of G,
then we have

|D∗

t | ≤ |D∗| + 2n. (1)

Fig. 2. For any vertexx of G which is not inD, the vertices
bx andcx belong toDt.

Conversely, letDt be a total dominating set ofG′.
We claim that we can assume that, for each vertexx of
G, exactly two vertices amongax, bx, cx, dx belong to
Dt. Indeed, it is easy to see that at least two of these
vertices belong toDt, else one of them (at least) is not
covered byDt. Now, if at least three of them belong to
Dt, then we can assume that onlyax, bx andcx belong
to Dt (straightforward case study : ifax, bx, cx anddx

belong toDt thendx can be removed, and if, say,ax, bx,
anddx belong toDt thenbx can be removed). In this
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Fig. 3. For any vertexx of D, the verticesax anddx belong
to Dt.

case, we can projectax onto a neighbour ofx in G —
that is to say we replaceax by a vertex ofG essentially
playing the same role asax — and hence assume that
bx andcx only belong toDt (see Figure 4).

Fig. 4. If ax, bx, cx belong toDt (anddx does not), then we
projectax onto a neighboury of x in G. Indeed, ifDt is a
total dominating set ofG′, thenDt r {ax} ∪ {y} is a total
dominating set ofG′ too, of cardinality less than or equal to
that of Dt.

Now, assume thatDt contains exactly two vertices
among ax, bx, cx, dx for each vertexx of G. It is
straightforward to check that the intersection ofDt
with G is then a dominating set ofG. Indeed, for every
vertexx in G which does not belong toDt, we know
that bx and cx belong toDt (andax and dx do not),
becauseax anddx must be covered inDt. But in this
case, sinceDt is a total dominating set, then there ex-
ists inG a neighbour ofx which belongs toDt, and we
are done. Thus, fromDt, we get a dominating set ofG
of cardinality less than or equal to|Dt| − 2n, hence

|D∗| ≤ |Dt| − 2n.

Since this is true for any total dominating setDt, then
in particular we have

|D∗| ≤ |D∗

t | − 2n. (2)

Putting (1) and (2) together, we get

|D∗

t | = |D∗| + 2n.

Now, we are ready to prove the L-reduction. On the one
hand, sinceG has maximum degree bounded by 3, then

|D| ≥
n

4

for any dominating setD of G, hence

|D∗

t | = |D∗| + 2n ≤ 9|D∗|.

On the other hand, we have described a procedure
which, given a total dominating setDt of G′, constructs
a dominating setD of G such that

|D| ≤ |Dt| − 2n,

which implies

|D| − |D∗| ≤ |Dt| − |D∗

t |.

Hence, we have an L-reduction from MIN DOM SET–3
to MIN TOT DOM SET–5 with parametersα = 9 and
β = 1. Since MIN DOM SET–3 is APX-hard [1], then
M IN TOT DOM SET–5 is APX-hard, hence MIN TOT

DOM SET–B is APX-hard for allB ≥ 5. 2

As a corollary, we get:

Theorem 2 The problemM IN TOT DOM SET is APX-
hard.

Now, we show an L-reduction from MIN TOT DOM

SET–5 towards MIN ID CODE–8.

Theorem 3 The problemM IN ID CODE–B is APX-
hard for all B ≥ 8.

Proof : We describe an L-reduction from MIN TOT

DOM SET–5 to MIN ID CODE–8. LetG be a graph on
n vertices having maximum degree less than or equal
to 5. Without loss of generality, we may assume thatG

has no isolated vertices. FromG we construct a graph
on4n verticesG′ by connecting each vertexx to all the
vertices of a pathaxbxcx (see Figure 5).

Note thatG′ has maximum degree bounded by 8.
Given a total dominating setDt of G, we construct an
identifying codeC of G′ as follows:C is composed of
the union ofDt with all the vertices of the formax and
cx in G′ (see Figure 6). It is straightforward to check
that if Dt is a total dominating set ofG, thenC is an
identifying code ofG′. Hence

|C∗| ≤ |C| = |Dt| + 2n,
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Fig. 5. Construction ofG′ from G. To each vertexx of G,
we connect the three vertices of a pathaxbxcx.

Fig. 6.C is composed of the union ofD with all the vertices
of the formax andcx in G′.

and since this is true for any total dominating setDt of
G, then we have

|C∗| ≤ |D∗

t | + 2n. (3)

Conversely, letC be an identifying code ofG′. We
claim that we may assume that for each vertexx of G,
ax andcx belong toC, andbx does not. Indeed, since
ax must be separated frombx, thencx belongs toC ;
and, similarly,ax must belong toC. Now, if bx belongs
to C, then we can simply remove it fromC: C r {bx}
is still an identifying code ofG′, of smaller cardinality
thanC.

Now, assume thatC containsax andcx for each ver-
texx of G, and does not containbx. It is straightforward
to check that the intersection ofC with G is a total dom-
inating set ofG (becausex andbx must be separated
in G′). Thus, fromC, we get a total dominating set of
G of cardinality less than or equal to|C| − 2n, hence

|D∗

t | ≤ |C| − 2n.

Since this is true for any identifying codeC, then in
particular we have

|D∗

t | ≤ |C∗| − 2n. (4)

Putting (3) and (4) together, we get

|C∗| = |D∗

t | + 2n.

Now, we are ready to prove the L-reduction. On the one
hand, sinceG has maximum degree bounded by 5, then

|Dt| ≥
n

5

for any total dominating setDt of G, hence

|C∗| = |D∗

t | + 2n ≤ 11|D∗

t |.

On the other hand, we have described a procedure
which, given an identifying codeC of G′, constructs a
total dominating setDt of G such that

|Dt| ≤ |C| − 2n,

which implies

|Dt| − |D∗

t | ≤ |C| − |C∗|.

Hence, we have an L-reduction from MIN TOT DOM

SET–5 to MIN ID CODE–8 with parametersα = 11
andβ = 1. Since MIN TOT DOM SET–5 is APX-hard
(from Theorem 1), then MIN ID CODE–8 is APX-hard,
hence MIN ID CODE–B is APX-hard for allB ≥ 8. 2

As a corollary, we get:

Theorem 4 The problemM IN ID CODE is APX-hard.

3.2. Positive approximation results

Theorem 5 M IN ID CODE is (2 ln|V|+1)-approximable,
and M IN ID CODE–B is (3 lnB + 1)-approximable.

Proof : Let G = (V, E) be a graph, and let thedistance
between two verticesu andv, denoted byd(u, v), be
the minimum number of edges of a path betweenu and
v (if such a path does not exist setd(u, v) = ∞, and for
all v ∈ V setd(v, v) = 0). LetS be the disjoint union of
S1 andS2, whereS1 is the set of vertices ofG, andS2

is the set of all pairs of vertices ofG at distance 1 or 2
from each other. Let us construct a familyF of subsets
of S as follows. Each element ofF corresponds to a
vertexz ∈ V ; it contains every vertexv ∈ S1 such that
z ∈ N [v], and it contains all pairs(u, v) ∈ S2 such that
z ∈ N [u]∆N [v] (whereA∆B denotes the symmetric
difference ofA andB). It follows from the definitions
thatC ⊆ V is an identifying code ofG if and only if C
is a solution of the MIN SET COVERproblem associated
with F . Indeed, the fact thatC covers all the vertices
of S1 is equivalent to the fact thatC is a dominating
set ofG. Now, the fact thatC moreover covers all the
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pairs of vertices inS2 is equivalent to the fact thatC is
an identifying code ofG. Indeed, any identifying code
clearly covers all pairs of vertices inS2. Conversely,
given a dominating setC of G, two verticesu, v at
distance at least 3 are necessarily such that

N [u] ∩ C 6= N [v] ∩ C

since their closed neighbourhoods are disjoint:N [u] ∩
N [v] = ∅ for all u, v such thatd(u, v) ≥ 3. Hence, a
dominating setC of G is an identifying code ofG if
and only ifN [u]∩C 6= N [v]∩C for all pairs of vertices
u, v at distance 1 or 2 from each other.

Since MIN SET COVER is (ln |S|+1)-approximable
[5], then MIN ID CODE is (2 ln |V |+ 1)-approximable
(using the rough bound|S| ≤ |V |2). Furthermore, ifG
has bounded degreeB, then each element ofF contains
at mostB + 1 elements ofS1 and at mostB2(B − 1)
elements ofS2. Indeed, each vertexz clearly covers at
mostB + 1 vertices ofS1 (note that any vertex covers
itself), andz separates itself from at mostB(B − 1)
vertices (all at distance 2 fromz), it separates also at
most B(B − 1) pairs of vertices at distance 1 (both
distinct fromz), and it finally separates at mostB(B −
1)(B − 2) pairs of vertices at distance 2 (both distinct
from z). Hence ifG has bounded degreeB, then(S,F)
is an instance of MIN (B3−B2 +B +1)–SET COVER.
Since MIN k–SET COVER is (ln k + 1)-approximable
[5], then MIN ID CODE–B is (3 lnB+1)-approximable
(using the rough boundB3 −B2 + B + 1 ≤ B3, valid
for all B ≥ 2). 2

4. Locating-dominating codes

4.1. APX-hardness of minimizing the size of a locat-
ing dominating code

Theorem 6 The problemM IN LOC DOM CODE–B is
APX-hard for allB ≥ 5.

Proof : We describe an L-reduction from MIN DOM

SET–3 to MIN LOC DOM CODE–5. LetG be a graph
onn vertices having maximum degree less than or equal
to 3. FromG we construct a graph on3n verticesG′ by
connecting two adjacent verticesax, bx to each vertex
x of G (see Figure 7).

Note thatG′ has maximum degree bounded by 5.
Given a dominating setD of G, we construct a locating-
dominating codeDℓ of G′ as follows:Dℓ is composed

Fig. 7. Construction ofG′ from G. To each vertexx of G,
we connect two adjacent verticesax andbx.

of the union ofD with all the vertices of the form
ax in G′. It is straightforward to check that ifD is a
dominating set ofG, thenDℓ is a locating-dominating
code ofG′. Hence

|D∗

ℓ | ≤ |Dℓ| = |D| + n,

and since this is true for any dominating setD of G,
then we have

|D∗

ℓ | ≤ |D∗| + n. (5)

Conversely, letDℓ be a locating-dominating set ofG′.
We claim that we can assume that for each vertexx of
G, there is exactly one vertexax or bx which belongs to
Dℓ. Indeed, if neitherax norbx belongs toDℓ for some
x, then they are not separated byDℓ, which contradicts
the fact thatDℓ is a locating-dominating code. Hence,
at least one of them belongs toDℓ. Now, if both vertices
ax, bx belong toDℓ, then we can either removeax from
Dℓ (if Dℓ r {ax} remains a locating-dominating code
of G′), or replace it byx in Dℓ. Indeed, ifDℓ r {ax}
is no longer a locating-dominating code ofG′, then it
means thatx is not dominated inG (hencex andax are
not separated), and in this case we can projectax onto
x andDℓ r {ax} ∪ {x} is a locating-dominating code
of G′ (see Figure 8).

Now, assume thatDℓ contains exactly one vertexax

or bx for each vertexx of G. Without loss of generality,
let us assume thatbx belongs toDℓ for all x in G. It
is straightforward to check that the intersection ofDℓ

with G is a dominating set ofG (becausex andax must
be separated). Thus, fromDℓ, we get a dominating set
of G of cardinality less than or equal to|Dℓ|−n, hence

|D∗| ≤ |Dℓ| − n.

Since this is true for any locating-dominating setDℓ,
then in particular we have

|D∗| ≤ |D∗

ℓ | − n. (6)



Gravier et al. – Algorithmic Operations Research Vol.3 (2008) 43–50 49

Fig. 8. For everyx in G, we can assume that there is only
one vertexax or bx in any locating-dominating code ofG′.
Indeed, both verticesax and bx are necessary if and only if
the correspondingx is not dominated inG, and in this case
we can projectax onto x to get a locating-dominating code
of G′ of the same cardinality.

Putting (5) and (6) together, we get

|D∗

ℓ | = |D∗| + n.

Now, we are ready to prove the L-reduction. On the one
hand, sinceG has maximum degree bounded by 3, then

|D| ≥
n

4

for any dominating setD of G, hence

|D∗

ℓ | = |D∗| + n ≤ 5|D∗|.

On the other hand, we have described a procedure
which, given a locating-dominating codeDℓ of G′,
constructs a dominating setD of G such that

|D| ≤ |Dℓ| − n,

which implies

|D| − |D∗| ≤ |Dℓ| − |D∗

ℓ |.

Hence, we have an L-reduction from MIN DOM SET–
3 to MIN LOC DOM CODE–5 with parametersα = 5
andβ = 1. Since MIN DOM SET–3 is APX-hard [1],
then MIN LOC DOM CODE–5 is APX-hard, hence MIN
LOC DOM CODE–B is APX-hard for allB ≥ 5. 2

As a corollary, we have :

Theorem 7 The problemM IN LOC DOM CODE is
APX-hard.

4.2. Positive approximation results

We start by a result giving a relation between the sizes
of locating-dominating codes and identifying codes in
a graph.

Theorem 8 Let G be a graph having no twins, letD∗

ℓ

be a locating-dominating code ofG of minimum cardi-
nality, and letC∗ be an identifying code ofG of mini-
mum cardinality. Then we have

|D∗

ℓ | ≥
1

2
|C∗|.

Proof : Let Dℓ be a locating-dominating code ofG.
We show that there exists an identifying codeC of G

such thatDℓ ⊆ C and|C| ≤ 2|Dℓ|. If Dℓ is already an
identifying code ofG, then we are done. If not, it means
that some vertices ofG are not separated byDℓ. Define
α an equivalence relation onV (G) such thatu α v if
and only ifu andv are not separated byDℓ. Clearly,α
is transitive, andu α v impliesu andv adjacent inG.
Hence, every equivalence class ofα induces a complete
subgraph ofG. Let K be an equivalence class ofα of
cardinalityk. We prove by induction onk that one can
add at mostk−1 vertices toDℓ to separate each pair of
vertices ofK. If k = 1, then we are done. Now, let us
assume thatk ≥ 2, and letu andv be two vertices ofK.
SinceG has no twins, then we may assume that there
exists a vertexz ∈ N [u]rN [v]. This vertexz separates
all pairs u′, v′ such thatz ∈ N [u′] and z 6∈ N [v′].
Therefore, addingz toK splitsK into two smaller (non-
empty) complete graphs, and we conclude by induction.
To conclude the proof, it is enough to observe that any
equivalence class ofα contains at most one element of
V (G) r Dℓ. 2

Given an integern ≥ 1, letGn be the complete graph
on2n+1 vertices minus a maximum matching. One can
show that a minimum identifying code ofGn has car-
dinality 2n, whereas a minimum locating-dominating
code ofGn has cardinalityn. Indeed, both endpoints
of any edge of the subtracted matching must belong to
any identifying code, for if not one of the endpoints
would not be separated from the vertex of degree2n

of Gn. Similarly, at least one endpoint of any edge of
the subtracted matching must belong to any locating-
dominating code, for if not the two endpoints would not
be separated from each other. It is easy to find an iden-
tifying code (resp. a locating-dominating code) ofGn

of cardinality2n (resp.n). Hence, the bound of Theo-
rem 8 is tight.

Since an identifying code ofG is always a locating-
dominating code ofG, then we have

1

2
|C∗| ≤ |D∗

ℓ | ≤ |C∗|, (7)
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hence we deduce approximability results for locating-
dominating codes :

Theorem 9 The problemM IN LOC DOM CODE is
2(2 ln |V | + 1)-approximable, and the problemM IN

LOC DOM CODE–B is 2(3 lnB + 1)-approximable.

Proof : Straightforward from (7) and Theorem 5.2

5. Conclusion

In this paper, we presented some simple reductions
improving known hardness results about minimizing
the size of identifying and locating-dominating codes in
graphs [3]. We also derived approximation algorithms
for both problems. For graphs of bounded degree, we
showed that both problems are in APX. It could be
of interest to try to close the gap between the positive
and the negative approximability results (between The-
orems 3 and 4 and Theorem 5, between Theorems 6 and
7 and Theorem 9). To get stronger non-approximability
results, one should probably reduce from another prob-
lem than MIN DOM SET, because the gap between the
minimum cardinalities of a dominating set and an iden-
tifying code of a graph can be arbitrarily large (consider
for example the starK1,n, n ≥ 3). As the problems of
finding minimum identifying and locating-dominating
codes in graphs remain NP-hard even when restricted
to bipartite graphs [3], then it is also a natural question
to ask whether one can get APX-hardness results for
bipartite graphs as well.
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