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K3,3 Minors and the Maximum-Flow Problem

Donald K. Wagner

Mathematical, Computer, and Information Sciences Division, Office of Naval Research, Arlington, VA 22203, U.S.A.

Abstract

Let G be a graph, and lete be an edge ofG. The main result of this paper is that any instance of the maximum-flow
problem onG having e as the “return” edge can be solved in linear time providedG does not have aK3,3 minor
containinge. The primary tool in proving this result is a new graph decomposition. In particular, it is shown that ifG
is 3-connected and does not have aK3,3 minor containinge, then it can be decomposed into planar graphs, “almost”
planar graphs, and copies ofK5.
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1. Introduction

This paper is concerned with the maximum-flow
problem. A basic knowledge of this problem is as-
sumed – see, for example, Ahuja, Magnanti, and Orlin
[1]. For the present purpose, an instance of the problem
is specified as(G, s, t, u), whereG is an undirected
graph,s andt are distinguishedsourceandsinknodes
of G, and u is a vector of real-valued, nonnegative,
edgecapacities. A flow is a pair (D, x), whereD is
an orientation ofG andx is a nonnegative, real-valued
vector indexed on the arc set ofD. For a given flow
(D, x) and nodei of D, define net flow at i to be
x(δ+(i))−x(δ−(i)), whereδ+(i) (respectively,δ−(i))
denotes the set of arcs that have nodei as their head
(respectively, tail). (Here, for a subset ofA of arcs or
edges,x(A) :=

∑
f∈A xf .) A flow (D, x) is feasibleif,

for each arcf of D, xf ≤ uf and for each nodei of
D other thans andt, the net flow ati equals zero. The
valueof a flow (D, x) is equal to the net flow att. A
maximumflow is one of maximum value. Aminimum
cut is an st-cut (in either the directed or undirected
sense, as appropriate) of minimum capacity.

Without loss of generality, it can be assumed thatG

has a unique edge joinings andt of capacity zero. Such
an edge is called thereturnedge. Throughout this paper,
the existence of the return edge is taken as a given.

Given the existence of a return edge, an instance of
the maximum-flow problem can equivalently be speci-
fied by(G, e, u), whereG andu are as before, ande is
an edge of capacity zero. Note, however, if an instance
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is specified as(G, e, u), ande = st, there is nothing to
distinguish the source nodes from the sink nodet. This
does not cause any confusion, however, since a flow
(D, x) maximizes the net flow att if and only if (D′, x)
maximizes the net flow ats, whereD′ is obtained from
D by reversing the orientation on each arc.

Now, consider an instance(G, e, u) of the maximum-
flow problem whereG is planar. (Note, given the as-
sumption about the existence of the return edgee = st,
this is equivalent to saying thatG\e is “st-planar”; that
is, it has a planar embedding in which two designated
nodes,s and t, lie on the same face.) Ford and Fulk-
erson [5] provided a specialized augmenting-path pro-
cedure for computing a maximum flow on(G, e, u) as-
suming a planar embedding ofG was given; this al-
gorithm pre-dates their well-known algorithm [6] for
general directed graphs by a year or so. (See Schri-
jver [15] for a comprehensive treatment of the history
of the maximum-flow problem.) Berge and Ghouila-
Houri [3] extended the Ford and Fulkerson algorithm
to directed planar graphs. AnO(n log n) version of the
Berge and Ghouila-Houri algorithm was developed in
Itai and Shiloach [11]. (Throughout,n and m denote
the number of nodes and edges, respectively, ofG.) A
different approach for planar graphs was developed by
Hassin [7], who provided anO(n)-time reduction of the
maximum-flow problem onG to a shortest-path prob-
lem on its planar dual. Combined with theO(n)-time
algorithm for solving the shortest-path problem on pla-
nar graphs due to Henzinger, Klein, Rao, and Subrama-
nian [8], this yields anO(n)-time algorithm for solving
the maximum-flow problem on(G, e, u).

c© 2008 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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The main purpose of this paper is to show that the
linear-time solvability of the maximum-flow problem
can be extended beyond planar graphs, and in particular,
to graphs that do not have aK3,3 minor containing the
return edge. This is done by employing a new graph
decomposition that essentially reduces the problem to
the planar case.

Others have looked at solving graph optimization
problems when theK3,3 minors are excluded entirely;
see, for example, Manor and Penn [13] and the refer-
ences contained therein. Additionally, there has been
work on solving optimization problems when other mi-
nors are excluded, such asK5; see, for example, Bara-
hona [2]. An important distinguishing feature of the
present work is that the minorK3,3 is excluded only
“locally” (i.e., through the return edge), not “globally”.
This feature can also be seen in the work of Seymour
[16], Truemper [20], and Tseng and Truemper [21] in
the context of matroids.

The remainder of this paper is structured as follows.
The next section contains the decomposition for graphs
that do not have aK3,3 minor containing a fixed edge
e. This decomposition is completely independent of the
maximum-flow problem. The decomposition forms the
basis of two algorithms to follow. The first, contained
in Section 3, is a linear-time algorithm for recognizing
graphs that do not have aK3,3 minor containing a fixed
edge. The second, contained in Section 5, is a linear-
time algorithm for solving the maximum-flow problem
on a graph that does not have aK3,3 minor containing
the return edge. Section 4 is a brief section containing an
algorithm for the target-flow problem, which is needed
for the maximum-flow algorithm that follows. The final
section briefly indicates how to extend the algorithm of
Section 5 to solve the directed version of the maximum-
flow problem.

2. Graph decomposition

A basic knowledge of graph theory is assumed. Un-
defined terminology is standard; see, for example, Di-
estel [4] or West [24].

Graph connectivity plays a central role in the graph
decomposition described here. The notion of connec-
tivity used here is that of Tutte [22]. In particular, a
connected graphG is n-connected, for n ≥ 2, if it does
not have ak-separation for anyk < n, where ak-
separation, for a positive integerk, of G is a partition
{E1, E2} of the edge set such that|E1| ≥ k ≤ |E2| and
the edge-induced subgraphsG[E1] andG[E2] have at

mostk nodes in common. If{E1, E2} is ak-separation,
then each ofE1 andE2 arek-separators. A k-separation
{E1, E2} of a connected graphG is an internal k-
separation if|E1| ≥ k+1 ≤ |E2|. A k-connected graph
is internally (k + 1)-connectedif it does not have an
internalk-separation.

In this paper, 2- and 3-separations play a crucial role,
as do the related notions of 2- and 3-sum decomposi-
tions, which are defined as follows. Let{E1, E2} be
a 2-separation of a2-connected graphG. Let f be a
new edge, and letG′ be the graph obtained by adding
f to G joining the two nodes inV (G[E1])∩V (G[E2]).
For i ∈ {1, 2}, defineGi to be G′[Ei ∪ {f}]. Then,
{G1, G2} is a2-sum decompositionof G, andf is the
connectingedge. Now, let{E1, E2} be an internal3-
separation of a3-connected graphG. For each pair of
non-adjacent nodes inV (G[E1])∩V (G[E2]), add a new
edge joining the pair; denote the resulting graph byG′.
Let T denote the set of edges ofG′ that have both ends
in V (G[E1]) ∩ V (G[E2]). For i ∈ {1, 2}, defineGi to
beG′[Ei ∪ T ]. Then,{G1, G2} is a3-sum decomposi-
tion of G, andT is theconnectingtriangle.

The following properties of 2- and 3-sum decompo-
sitions are well known and straightforward to prove.

LEMMA 1. Let{G1, G2} be ak-sum decomposition of a
k-connected graphG, for k ∈ {2, 3}. Then,G1 andG2

are k-connected and are isomorphic to proper minors
of G. ⊔⊓

Two special kinds of internal 3-separations are
needed. Both are defined relative to a fixed edge.
Specifically, let{E1, E2} be an internal 3-separation of
a 3-connected graphG, and lete be a fixed edge ofG.
If both ends ofe are inV (G[E1])∩V (G[E2]), then the
3-separation{E1, E2} is said to bestraddledby e. Ob-
serve that is in this case,e is in the connecting triangle
of the corresponding 3-sum decomposition. The sec-
ond special internal 3-separation is as follows. Suppose
E1 has exactly seven edges, saye, f1, . . . , f6. Suppose
further that{e, f1, f2}, {e, f3, f4}, and{e, f5, f6} are
triangles ofG such that no two of{f1, . . . , f6} are
parallel. Then,G[E1] is a crown and {E1, E2} is a
crown 3-separation ofG with respect toe. Observe
that the crownG[E1] has three nodes of degree two,
which by the 3-connectivity ofG, constitute the set
V (G[E1])∩V (G[E2]). It also has two nodes of degree
four, which are the ends ofe.

Let G be a 3-connected graph, and lete be an edge
of G. Let {E1, E2} be a crown 3-separation ofG with
respect toe, wheree ∈ E1. Let {G1, G2} be the cor-
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responding 3-sum decomposition. IfG2 is planar, then
G is said to becrown-planarwith respect toe.

The primary decomposition tool used in this paper is
the following. LetG be a 3-connected graph, and lete =
st be an edge ofG. If G\{s, t} is 2-connected, then de-
fine{G} to be thee-decompositionof G. Otherwise, as-
sume thatG\{s, t} has a 1-separation, and letv1, . . . , vp

denote its cut nodes. LetV1, . . . , Vk denote the node sets
of the blocks ofG\{s, t}. Let (G, e)+ denote the graph
obtained fromG by adding avirtual edge joining ev-
ery non-adjacent pair of nodes in{s, t}×{v1, . . . , vp}.
WhereH := (G, e)+, thee-decompositionof G is de-
fined to be the set{H [V1∪{s, t}], . . . , H[Vk∪{s, t}]}.

The main goal of this section is to prove the following
theorem.

THEOREM 1. Let G be a 3-connected graph, and let
e be an edge ofG. Then,G does not have aK3,3

minor containinge if and only if every member of thee-
decomposition ofG is either planar, crown-planar with
respect toe, or isomorphic toK5.

The proof of Theorem 1 is broken down into a se-
quence of results, which will be collected into a concise
proof later in the section.

The next lemma relates 3-sum decompositions and
e-decompositions. LetD be thee-decomposition of a
3-connected graphG, and letH be a member ofD.
Using the above notation, ifD = {G}, defineG to be
the (unique)end member ofD; otherwise, define the
endmembers ofD to be those members that correspond
to theendblocks ofG\{s, t}; that is, those blocks that
contain exactly one of{v1, . . . , vp}.

LEMMA 2. Let G be a3-connected graph, lete = st

be an edge ofG, and suppose thatG\{s, t} is not
2-connected. LetG1 be an end member of thee-
decompositionD of G. Then, there exists an internal3-
separation ofG straddled bye such that{G1, G2}, for
someG2, is the corresponding3-sum decomposition.
Moreover,D − {G1} is thee-decomposition ofG2.

Proof.Observe that each end block ofG\{s, t} con-
tains at least two nodes. Therefore, each end member
of D contains at least four nodes.

SinceG1 is an end member ofD, there exist a corre-
sponding end block ofG\{s, t}. Let B denote this end
block, and letz denote unique cut node ofG\{s, t} in
B.

Let E1 be those edges ofG1 that are edges ofG, and
defineE2 := E(G) − E1. From the definition of the
e-decomposition, it follows thatV (G[E1])∩V (G[E2])

consists of exactly three nodes, namelys, t, andz. From
the above,G1 has at least four nodes, and therefore at
least one node not inV (G[E1])∩ V (G[E2]). By the 3-
connectivity ofG, this node is incident to at least three
edges. These three incident edges plus the edgee are in
E1, and therefore|E1| ≥ 4. Similarly, G2 has a node
not in V (G[E1]) ∩ V (G[E2]), and therefore|E2| ≥ 3.
Observe thatG has at least five nodes, and since it is
3-connected, it has at least eight edges. Thus, either
|E2| ≥ 4 or |E1| ≥ 5. In the latter case, re-defineE1

andE2 by transferringe from E1 to E2. It follows that
{E1, E2} is an internal 3-separation ofG straddled bye,
the 3-sum decomposition of which is equal to{G1, G2}
for an appropriately defined graphG2.

Now, observe that the graphG2\{s, t} is equal to
the graphG\{s, t} with the end blockB removed.
(That is, deleting all of the nodes ofB, except forz,
from G\{s, t}.) It follows that D − {G1} is the e-
decomposition ofG2. ⊔⊓

In many situations in this section, it is easier to deal
with K3,3 subdivisions rather than minors. The follow-
ing result, which is straightforward and used without
further reference, makes this possible.

LEMMA 3. LetG be a3-connected graph, and lete be
an edge ofG. Then,G has aK3,3 minor containinge
if and only ifG has aK3,3 subdivision containinge. ⊔⊓

The next lemma shows that the property of hav-
ing a K3,3 minor containinge is inherited undere-
decompositions.

LEMMA 4. Let G be a 3-connected graph, and let
e be an edge ofG. Then, some member of thee-
decomposition ofG has aK3,3 minor containinge if
and only ifG does.

Proof. Let e = st, and letH := (G, e)+.
First, letJ be a member of thee-decomposition ofG

that has aK3,3 minor containinge. Then, it has aK3,3

subdivision, sayK, containinge. If K does not contain
any virtual edges, then it is also a subgraph ofG, as
required. IfK does contain a virtual edge, it is shown
each such edge ofK can be replaced by a path ofG in
such a way that the result is aK3,3 subdivision ofG.

Let B be the unique block ofG\{s, t} such that
J = H [V (B) ∪ {s, t}]. Let f be a virtual edge ofK.
Then,f joinss (say) to a nodez1 of B, wherez1 is also
a cut node ofG\{s, t} Observe that no other virtual
edge ofK can be incident toz1, for if such an edge were
to exist, it would joinz1 to t, implying thatK contains
a triangle on nodes{s, t, z1}, which is impossible in a
K3,3 subdivision. Sincez1 is a cut node ofG\{s, t}
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and sinceG is 3-connected, there exists a path, say
Z1, from z1 to s in G, no edges of which are from
B. Similarly, one can construct pathsZ2, . . . , Zk, one
for each remaining virtual edge ofK. Observe that the
pathsZ1, . . . , Zk are pairwise internally node disjoint.
Thus, replacing the virtual edges ofK with the paths
Z1, . . . , Zk produces aK3,3 subdivision ofG.

Now, supposeG has aK3,3 subdivisionK containing
e. Observe thatK\{s, t} contains a cycle; letB be the
block of G\{s, t} that contains this cycle, and letJ be
the unique member of thee-decomposition ofG such
that J = H [V (B) ∪ {s, t}]. If K is a subgraph ofJ ,
then the lemma is proved. Thus, assume this is not the
case. Now, observe that the edges ofK not in J can
be partitioned into internally node-disjoint paths, each
of which starts at a node ofB and ends at eithers or
t. Let Z1, . . . , Zk denote these paths, and letz1, . . . , zk

denote their respective starting nodes. Observe that the
z1, . . . , zk are distinct cut nodes ofG\{s, t}. Therefore,
by the definition of thee-decomposition, each one of
z1, . . . , zk is adjacent is to boths andt by an edge ofJ
not inK. It follows that the pathsZ1, . . . , Zk of K can
be replaced by edges ofJ to produce aK3,3 subdivision
of J . ⊔⊓

The next theorem is a well-known result of K. Wagner
[23].

THEOREM 2. Let G be a3-connected graph. Then,G
does not have aK3,3 minor if and only ifG is planar
or isomorphic toK5. ⊔⊓

The next result, onK3,3 subdivisions, is due tŏSirán̆
[17]. If a graphH is a subdivision of a graphK, and
s andt are non-adjacent nodes ofK, thens andt are
independentin H .

LEMMA 5. LetG be a3-connected graph, and lete = st

be an edge ofG. If e is not contained in anyK3,3

subdivision ofG, then, for everyK3,3 subdivisionH of
G, s andt are independent degree-three nodes ofH . ⊔⊓

Let G be a graph, and letH be a subgraph ofG. Let
P be a path ofG, the end nodes of which are nodes of
H , and the internal nodes of which are not nodes ofH .
Then, the subgraphH ∪ P of G is said to be obtained
from H by adjoiningP , andP is anadjoinablepath of
G with respect toH .

Let G be a graph, and lete be an edge ofG. LetH be
a K3,3 subdivision ofG, and suppose thate joins two
independent degree-three nodes ofH . SinceK3,3 has
nine edges, the graphH consists of nine paths, each of
which is a subdivision of an edge ofK3,3. The six such

paths that share an end withe are called theprincipal
paths ofH with respect toe; the remaining three paths
are thesupportpaths ofH . TheK3,3 subdivisionH of
G is good(respectively,bad) with respect toe if all six
(respectively, at most five) of the principal paths with
respect toe consist of a single edge.

LEMMA 6. Let G be a 3-connected graph, and lete
be an edge ofG. Assume thatG does not have aK3,3

minor that containse or an internal3-separation that
is straddled bye. Then, everyK3,3 subdivision ofG is
good with respect toe.

Proof.If G is planar or isomorphic toK5, then, vacu-
ously, everyK3,3 subdivision ofG is good with respect
to e. Thus, Theorem 2 implies thatG has aK3,3 minor,
and thus, aK3,3 subdivision. Lete = st. By Lemma
5, s andt are independent degree-three nodes in every
K3,3 subdivision ofG. If the theorem is not true, then
there exists aK3,3 subdivision ofG, sayH , in which
some principal path with respect toe, sayQ1, has at
least two edges. Lety denote the end node ofQ1 not in
{s, t}. Let Q2 denote the other principal path that hasy

as an end node, and letS1 denote the support path that
hasy as an end node. Denote the other end node ofS1

by z. Consistent with the above, assumeH andQ1 are
chosen so that the number of edges inS1 is as small as
possible.

Claim: If an adjoinable path ofG with respect toH
has one end that is an internal node of eitherQ1 or Q2,
then the other end of the path is a node ofV (Q1∪Q2∪
S1).

Proof of Claim: If the other end of the path is not in
V (Q1∪Q2∪S1), then it is easy to check that adjoining
the path toH results in a graph that has aK3,3 minor
that containse, a contradiction.End of Claim.

Observe that{Q1 ∪Q2 ∪ {e}, E(H)− (Q1 ∪Q2 ∪
{e})} is an internal 3-separation ofH straddled bye.
SinceG does not have an internal 3-separation straddled
by e, there exists an adjoinable pathR1 of G, one end
of which, sayp1, is a internal node ofQ1 (say), and the
other end of which, sayr1, is not inV (Q1 ∪ Q2). By
the Claim,r1 is a node ofS1; if it is an internal node of
S1, then a contradiction to the choice ofH is obtained
by adjoiningR1 to H and deleting the internal nodes
of theyp1-subpath of subpath ofQ1. Thus,r1 = z.

Observe that{Q1∪Q2∪S1, E(H)−(Q1∪Q2∪S1)}
is an internal 3-separation ofH straddled bye. SinceG

does not have an internal 3-separation straddled bye,
there exists an adjoinable pathR2 of G with respect to
H , one end of which, sayp2, is inV (Q1∪Q2∪S1), the
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other end of which, sayr2, is not inV (Q1∪Q2∪S1), and
neither end of which is in{s, t, z}. By the Claim,p2 is
a node ofS1 andr2 is a node ofS2 (say). Moreover,p2

must equaly, for otherwise a contradiction to the choice
of H is obtained by adjoiningR2 to H and deleting the
internal nodes of thezr2-subpath ofS2. By the Claim,
R1 andR2 are node disjoint. Now,H ∪R1 ∪R2 has a
K3,3 minor that containse, a contradiction.⊔⊓

The following result can be seen an a generalization
of Theorem 2. It was inspired by a similar type result
for matroids due to Tseng and Truemper [21]. A version
of this result was independently discovered by Mohar
[14].

LEMMA 7. Let G be a 3-connected graph, and lete
be an edge ofG. Assume thatG does not have aK3,3

minor that containse or an internal3-separation that
is straddled bye. Then,G is planar, crown-planar with
respect toe, or isomorphic toK5.

Proof.By Theorem 2, eitherG is planar, isomorphic
to K5, or has aK3,3 minor. Thus, by Lemma 6,G has
a K3,3 subdivision, sayH , that is good with respect to
e. Let e = st, and letz denote the common end node
of the three support paths ofH . Let v, w, andy denote
the remaining degree-three nodes ofH . Let S1, S2, and
S3 denote the three support paths ofH with respect to
e, and without loss of generality, assume that the ends
of S1 arey andz.

Observe that{{S1, sy, ty, e}, E(H)−{S1, sy, ty, e}}
is an internal 3-separation ofH straddled bye. Since
G does not have an internal 3-separation straddled by
e, there exists an adjoinable pathR1 of G with respect
to H , one end of which is inV (S1), the other end of
which is in V (S2) (say), and neither end of which is
equal toz. Similarly, there exists an adjoinable path
R2 of G with respect toH , one end of which isV (S3),
the other end of which is inV (S1) (say), and neither
end of which is equal toz.

Observe that{{e, sv, tv, sw, tw, sy, ty}, S1 ∪ S2 ∪
S3∪R1∪R2} is a crown 3-separation with respect toe

of H∪R1∪R2. Thus, eitherG has a crown 3-separation
with respect toe or there exists an adjoinable pathR3

of G with respect toH ∪ R1 ∪ R2, one end of which
is in {s, t} and the other end of which, call itr3, is in
V (S1∪S2∪S3∪R1∪R2). If r3 6= z, then observe that
H∪R1∪R2∪R3 contains a badK3,3 subdivision with
respect toe, which, by Lemma 6, is a contradiction.
(Note, if r3 ∈ {v, w, y}, then, by the 3-connectivity of
G, R3 has at least two edges.) Thus,r3 = z. It can
now be checked thatH ∪ R1 ∪ R2 ∪ R3 contains a

K3,3 minor containinge, a contradiction. Thus, it can
be assumed that{{e, sv, tv, sw, tw, sy, ty}, E(G) −
{e, sv, tv, sw, tw, sy, ty}} is a crown 3-separation of
G. Let {G1, G2} be the corresponding 3-sum decom-
position.

To show thatG is crown-planar with respect toe, it
suffices to show thatG2 is planar. To this end, suppose
this is not the case. By Lemma 1,G2 is 3-connected.
By Theorem 2,G2 is either isomorphic toK5 or has a
K3,3 minor. In the former case, it is easy to see thatG

has aK3,3 minor containinge, a contradiction. In the
latter case,G has aK3,3 subdivision for whiche does
not join independent nodes, contradicting Lemma 5.⊔⊓

Lemma 7 has as a corollary the following result,
which was proved by Thomas [19]. The corollary, in
turn, generalizes a result ofS̆irán̆ [17].

COROLLARY. Let G be an internally 4-connected
graph, and lete be an edge ofG. Assume thatG does
not have aK3,3 minor that containse. Then, eitherG
is planar or isomorphic toK5. ⊔⊓

The next result examines further the structure of
crown-planar graphs occuring in ane-decomposition,
showing that they are “almost” planar.

LEMMA 8. Let G be3-connected a graph, and lete be
an edge ofG. Assume thatG does not have aK3,3 minor
containinge or an internal3-separation straddled bye.
Let{E1, E2} be a crown3-separation ofG with respect
to e with e ∈ E1. Then,G is crown-planar with respect
to e if and only if G\f is 3-connected and planar for
any edgef adjacent toe.

Proof. First, suppose thatG is crown-planar with re-
spect toe. Let e = st, and letf = sy be an edge of
G adjacent toe. It is first shown thaty has degree at
least four inG. If not, then the three edges incident to
y together with the edgee comprise a 3-separator of
G, the corresponding 3-separation of which is an inter-
nal 3-separation straddled bye, a contradiction. Thus,
y has degree at least four inG. Also, by definition,s
has degree four inG.

To show thatG\f is 3-connected, suppose that it has
a 2-separation{F1, F2} with e ∈ F1. Letp andq denote
the two nodes inV (G[F1]) ∩ V (G[F2]). Observe that
{F1, F2 ∪{f}} is a 3-separation ofG. Moreover, since
both ends off have degree at least four, it is an internal
3-separation. Also, observe that sincee and f are in
a triangle ofG, it must be the case thatt ∈ {p, q}.
This shows that{F1, F2 ∪ {f}} is straddled bye, a
contradiction.

If G\f is not planar, then Theorem 2 implies that it
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is either isomorphic toK5 or has aK3,3 minor and,
therefore, aK3,3 subdivision. Evidently,s has degree
three inG\f . If G\f is isomorphic toK5, s has degree
four in G\f , a contradiction. Similarly, ifG\f has a
K3,3 subdivision, then, by Lemma 5,s has degree at
least four inG\f , a contradiction.

Now, suppose thatG\f is 3-connected and planar for
any edgef adjacent toe. Let{G1, G2} be the 3-sum de-
composition corresponding to the internal 3-separation
{E1, E2}. Evidently,G2 is isomorphic to a minor of
G\f , and thus is planar.⊔⊓

The proof of Theorem 1 can now be presented.

Proof of Theorem 1. First, assume every member of
the e-decomposition ofG is planar, crown-planar with
respect toe, or isomorphic toK5, and suppose that
G has aK3,3 minor containinge. By Lemma 4, some
memberJ of the e-decomposition has aK3,3 minor
containinge. Clearly,J cannot be planar or isomorphic
to K5. Thus,J is crown-planar with respect toe.

Let K be aK3,3 subdivision ofJ containinge. Since
the maximum degree inK is three, there exists an edge
f of J adjacent toe that is not inK. Thus,K is a
subgraph ofJ\f , contradicting Lemma 8.

Now, suppose thatG has noK3,3 minor containing
e. Let J be a member of thee-decomposition ofG.
By Lemma 4,J has noK3,3 minor containinge. By
definition of thee-decomposition,J does not have an
internal 3-separation straddled bye. Thus, by Lemma
7, J is either planar, crown-planar with respect toe, or
isomorphic toK5. ⊔⊓

The final two results of the section are useful in the
derivation of the time complexity of the algorithms to
follow. In particular, it is shown that if a simple 2-
connected graphG has an edgee that is not contained
in a K3,3 minor, then the number of edges ofG is
bounded by5n−12. The analogous well-known bound
for simple planar graphs is3n − 6; see, for example,
Diestel [4].

LEMMA 9. LetG be a simple2-connected graph having
at least three nodes. If, for some edgee, G does not
have aK3,3 minor containinge, thenG has at most
5n− 12 edges.

Proof. First, assume thatG is 3-connected, and so
Lemma 7 applies. IfG is planar, thenG has at most
3n− 6 edges, which sincen ≥ 3, is at most5n− 12. If
G\f is planar for some edgef of G andn ≥ 5 (which
is true ifG is crown-planar with respect toe (by Lemma
8) or isomorphic toK5), thenG has at most3n − 5

edges. Sincen ≥ 5, 3n−5 ≤ 5n−12. Thus, by Lemma
7, it can be supposed thatG has an internal 3-separation
straddled bye. Let {G1, G2} be the corresponding 3-
sum decomposition, and letk denote the number of
edges ofG in E(G1) ∩ E(G2). By Lemma 1,G1 and
G2 are both 3-connected and neither has aK3,3 minor
containinge. Now, using the facts thatm = |E(G1)|+
|E(G2)|−6+k, |V (G1)|+|V (G2)| = n+3 andk ≤ 3,
the result follows by induction.

Second, suppose thatG is 2-connected, but not 3-
connected. Let{E1, E2} be a 2-separation ofG with
e ∈ E1. Let {G1, G2} be the corresponding 2-sum de-
composition, and letf be the connecting edge. Observe
G1 (say) might not be simple because of a possible
edge parallel tof ; if such an edge exists, denote it by
g. By Lemma 1,G1, G2, andG1\g (if g exists) are 2-
connected. Also, it is straightforward to check neither
G1 nor G1\g (if g exists) has aK3,3 minor containing
e, and thatG2 does not have aK3,3 minor containing
f . Now, using the facts that|V (G1)|+ |V (G2)| = n+2
andm = |E(G1)|+ |E(G2)| − 2, the result follows by
induction.⊔⊓

LEMMA 10.LetG be a3-connected graph, and lete be
an edge ofG. Then, the total number of edges occuring
in the members of thee-decomposition ofG is at most
m + 5n.

Proof. Let k1 denote the total number of edges that
belong to exactly one member of thee-decomposition,
let k2 denote the total number of times that the edgee

appears in some member of thee-decomposition, and
let k3 denote the total number of remaining edges; that
is, those edges, other thane, that appear in more than
one member of thee-decomposition. Thus, the total
number of edges occuring in the members of thee-
decomposition ofG is k1 + k2 + k3.

Considerk1. Observe that the only edges that appear
in exactly one member of thee-decomposition must be
edges ofG. Thus,k1 ≤ m.

Considerk2. Let e = st. The edgee occurs ex-
actly once in every member of thee-decomposition. The
number of members of thee-decomposition is equal
to the number of blocks ofG\{s, t}, which in turn is
bounded byn. Thus,k2 ≤ n.

Considerk3. Observe that the edges, other thane, that
appear in more than one member of thee-decomposition
are precisely those edges ofH := (G, e)+ that join
eithers or t to a cut node ofG\{s, t}. Let {v1, . . . , vp}
denote the cut nodes ofG\{s, t}. Consider an edgef
joining v1 to s. Then, the number of timesf appears
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in some member of thee-decomposition is equal to the
number of blocks ofG\{s, t} that containv1; denote
this number byd1. Thus,k3 = 2

∑p

i=1
di. Now, it is

easy to see (by induction, for example) that
∑p

i=1
di

is bounded by twice the number of blocks ofG\{s, t},
which in turn is bounded by2n. Therefore,k3 ≤ 4n. ⊔⊓

Combining Lemmas 9 and 10 evidently yields an
O(n) bound on the total number of edges occuring in the
members of thee-decomposition of a graphG having
no K3,3 minor containinge.

3. A recognition algorithm

This section provides an algorithm for recognizing
whether a graphG contains aK3,3 minor containing a
fixed edgee of G. The algorithm relies on having the
e-decomposition ofG on hand. Thus, the first step is to
compute thee-decomposition.

Algorithm Decomp below computes thee-decompos-
ition by essentially implementing its definition. For this
algorithm, letG be a 3-connected graph, and lete = st

be an edge ofG. It assumed thatG is represented by
adjacency lists. For a nodey of G, denote the adjacency
list of y by LG(y).

algorithm decomp;
begin

delete nodes s and t from G and let H be the
resulting graph;
compute the blocksB1, . . . , Bk

and cut nodes of H ;
for i = 1, . . . , k do

begin
V (Ji) := V (Bi) ∪ {s, t};
E(Ji) := {vy ∈ E(G)|{v, y} ⊆ V (Ji)}∪
{sv|v is a cut node of H ; sv 6∈ E(G)}∪
{tv|v is a cut node of H ; tv 6∈ E(G)};

end;
end;

PROPOSITION 1. Algorithm Decomp correctly com-
putes thee-decomposition ofG in O(m + n) time.

Proof. The correctness of the algorithm follows di-
rectly from the definition of thee-decomposition.

The first step is to construct the graphH := G\{s, t}.
To do this, one first copies all the adjacency lists, except
for those corresponding tos andt. Then, one scans the
adjacency lists corresponding to the neighbors ofs or t,
removing each occurrence ofs andt. Clearly, this can
be done inO(m + n) time.

The second step is to compute the blocks ofH . This
can be done inO(m + n) time using the algorithm of
Tarjan [18].

The last step is to add the nodess and t to each
block ofH . First, for each nodey of H , construct a list
By of the set of blocks ofH that containy; evidently,
nodes that appear in more than one block are the cut
nodes ofH . This requires scanning the list of nodes
in each block once, and so requiresO(

∑k
i=1
|V (Bi)|)

time, which is easily seen (by induction, for example) to
beO(n). Now, consider the nodes. Create an (initially
empty) adjacency list fors for each block ofH . Then,
scanLG(s), and for each nodey onLG(s) and for each
z ∈ By, add y to LJz

(s) and s to LJz
(y). If y is a

cut node ofH , mark it. Finally, for each unmarked cut
nodev and for eachz ∈ Bv, addv to LJz

(s) ands to
LJz

(v). In this way,s (and analogously,t) can be added
in O(n) time.⊔⊓

The recognition algorithm is now described.

algorithm recog;
begin

if m > 5n− 12 then G has a K3,3 minor
containing e;
compute ane-decompositionD of G;
flag← true;

while D 6= ∅ do
begin

choose H ∈ D;
if H is not planar, crown-planar with

respect to e, or isomorphic to K5

then flag← false;
D ← D − {H};

end;
if flag = false then G has a K3,3 minor

containing e;else G does not haveaK3,3

minor containing e;
end;

PROPOSITION2.Algorithm Recog correctly determines
whether a3-connected graphG has aK3,3 minor con-
taining e in O(n) time.

Proof. The correctness of the algorithm follows di-
rectly from Theorem 1 and Lemma 9.

Computing thee-decomposition ofG requiresO(n)
time by Proposition 1 and the firstif statement.

Determining whether a givenH is planar requires
O(|V (H)|) time using the algorithm of Hopcroft and
Tarjan [10].

Determining whether a givenH is isomorphic toK5
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can evidently be done in constant time.
Determining whether a givenH is crown-planar with

respect toe can be done inO(|V (H)|) time as follows.
First, determine ifH has a crown 3-separation with
respect toe; this requires constant time since a crown
has just seven edges. Next, form the corresponding 3-
sum decomposition, and determine if the member of the
3-sum decomposition not containinge is planar; this
requiresO(|V (H)|) time.

By Lemmas 9 and 10,
∑

H∈D |V (H)| is O(n). ⊔⊓

4. The Target-Flow Problem

As part of the maximum-flow algorithm of the next
section, the followingTarget-Flow Problemneeds to be
solved: given an instance(G, e, u) of the maximum-
flow problem and atarget flow valuev, find a feasible
flow in (G, e, u) of valuev, or determine no such flow
exists. In principle, the target-flow problem can be easily
reduced to the maximum-flow problem – just subdivide
the edgee into two edges, one of capacityv and one of
capacity zero. The nature of the maximum-flow algo-
rithm presented in the next section, however, precludes
this approach. The following algorithm will suffice.

algorithm target;
begin

compute a maximum flow of value z and a
minimum cut C in (G, e, u);

if v > z then (G, e, u) does not have a target
flow of value v;

while u(C) > v do
begin

choose an edge f of C having positive
capacity;
δ ← min{uf , u(C)− v};
uf ← uf − δ;

end;
compute a maximum flow in (G, e, u);

end;

PROPOSITION3.Algorithm Target correctly computes a
target flow of valuev in (G, e, u). Moreover, the running
time of the algorithm is equal to that of solving the
maximum-flow problem(G, e, u).

Proof. If v > z, then clearly(G, e, u) does not have
a target flow of valuev. Thus, assumev ≤ z. Let C be
the minimum cut computed by the algorithm. Consider
the first execution of thewhile loop. In particular, letf
andδ be as defined, and letu′ be the capacity vector

resulting from the first execution of thewhile loop.
Now, consider any cutD in G. If f 6∈ D, then

u′(D) = u(D), and iff ∈ D, thenu′(D) = u(D)− δ.
It follows that, after one execution of thewhile loop,C
is a minimum cut in(G, e, u′).

Repeating the above argument implies that after the
final execution of thewhile loop,C is a minimum cut,
and its capacity is equal to the target valuev. There-
fore, by the Max-Flow-Min-Cut Theorem [5], the final
maximum-flow computation of the algorithm produces
the desired flow.

With respect to the running time of the algorithm,
clearly the dominant steps are the two maximum-flow
computations.⊔⊓

5. A Maximum-Flow Algorithm

Theorem 3 below is the main result of the paper.
The basic idea of the proof is to use 2- and 3-sum
decompositions to reduce the original maximum-flow
problem onG to a sequence of maximum-flow problems
on “easy” graphs.

The relationship between 2- and 3-sum decomposi-
tions and maximum flows is not a new; for example,
it can be seen in the matroid work of Seymour [16]
and Truemper [20]. In particular, the work of Truemper
[20] shows how to compute a maximum flow using 2-
and 3-sum decompositions. Applied here, the Truemper
approach would lead to a polynomial-, but not linear-
time, algorithm. The proof of Theorem 3 below yields
a linear-time algorithm.

THEOREM 3. The maximum-flow problem(G, e, u),
whereG is simple and has noK3,3 minor containing
e, can be solved inO(n) time.

Proof. The proof is via a sequence of reductions.
Throughout the proof, it is assumed, by Lemma 9, that
m is O(n). Also, as usual, lete = st.

(I) Reduction to the2-Connected Case
The first step is to show that it can be assumed that

G is 2-connected. It is well known that, for any edgef

not contained in the block ofG that containse, there
exists a maximum flow in which the flow onf is zero.
Thus, computing a maximum flow can be confined to
the block ofG that containse, which can be computed
in O(n) time; see, for example, Tarjan [18]. Thus, it is
assumed thatG is 2-connected.

(II) Reduction to the3-Connected Case
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The next step is to show that the maximum-flow prob-
lem (G, e, u) can be reduced in linear time to solv-
ing a sequence of maximum-flow problems, where each
problem in the sequence is defined on a graph that is
3-connected and does not contain aK3,3 minor using
its return edge, and such that total size of this sequence
of graphs in linear in the size ofG.

(IIa) Maximum Flows and2-Sum Decompositions
The first step in defining this sequence is to examine

the relationship between an instance of the maximum-
flow problem and a 2-sum decomposition in the under-
lying graph. So, suppose thatG is not 3-connected, and
let {E1, E2} be a 2-separation ofG with e ∈ E1. Let
{G1, G2} be the corresponding 2-sum decomposition,
and letf be the connecting edge. By Lemma 1,G1 and
G2 are 2-connected. Moreover, it is straightforward to
verify thatG1 (respectively,G2) does not have aK3,3

minor containinge (respectively,f ). First, consider
solving the maximum-flow problem(G2, f, u2), where
each edge ofG2, except forf , inherits is capacity from
G. Let v2 denote the maximum-flow value. Now, con-
sider (G1, e, u

1), whereu1
f = v2 and all other edges

of G1 inherit their capacity fromG. Then, it is well
known and not hard to see that the maximum-flow value
for (G1, e, u

1) is equal to that of(G, e, u). Moreover,
a maximum flow for(G, e, u) can be found by first
computing a maximum flow(D1, x

1) in (G1, e, u
1),

then computing a feasible flow(D2, x
2) of value x1

f

in (G2, f, u2) (using Algorithm Target), and finally
by combining these two flows into a flow(D, x) for
(G, e, u).

Combining(D1, x
1) and (D2, x

2) into a maximum
flow (D, x) of (G, e, u) is done as follows. First, it is
assumed that the source node for the flow(D2, x

2) co-
incides with the tail off in D1; if not, then the orienta-
tion of the arcs inD2 need to be reversed. Second, by
definition, each edge ofG appears in exactly one ofG1

or G2. Thus, one can construct a feasible flow(D, x)
for (G, e, u) by simply, for each edge ofG, taking its
orientation and flow from either(D1, x

1) or (D2, x
2),

as appropriate. Now, it is straightforward to see that
(D, x) is a maximum flow for(G, e, u).

(IIb) The Reduction Procedure
To turn the above relationship between maximum

flows and 2-sum decomposition into a computationally
efficient algorithm requires two straightforward ideas.
First, one chooses the 2-sum decomposition judiciously,
and second one applies this judicious choice recursively.
Tutte [22] and Hopcroft and Tarjan [9] showed that

one can always find a 2-separation{E1, E2} of G such
that e ∈ E1 and in the resulting 2-sum decomposi-
tion {G1, G2}, G2 is either 3-connected, a cycle, or a
bond (i.e., the planar dual of a cycle). Applying this
choice of 2-sum decomposition recursively reduces the
maximum-flow problem onG to solving a sequence of
maximum-flow and target-flow problems on a collection
of graphs, say{H1, . . . , Hp}, every member of which
is either 3-connected, a cycle, or a bond. Moreover,
Hopcroft and Tarjan [9] showed that the sequence of
2-separations necessary to generate{H1, . . . , Hp} can
be found inO(n) time and that the size of the collec-
tion, i.e.,

∑p

i=1
|V (Hi)|, is O(n). Observe that solving

a maximum-flow or target-flow problem on a cycle or
bond can trivially be done in linear time (in the size of
the cycle or bond). Thus, inO(n) time, the maximum-
flow problem onG can be reduced to solving a sequence
of maximum-flow and target-flow problems, each of
which is on a graph that is 3-connected and does not
have aK3,3 minor using its return edge. Moreover, the
total size of the graphs in the sequence isO(n). So, in
particular, if each of these 3-connected maximum-flow
or target-flow problems can be solved in linear time,
so can the original problem(G, e, u). By Proposition
3, each of the target-flow problems is computationally
equivalent to a maximum-flow problem. Thus, it suf-
fices to consider the maximum-flow problem whenG

is 3-connected.

(III) Reduction to the Planar Case
Assume thatG is 3-connected. By Lemma 7,G is ei-

ther planar, crown-planar with respect toe, isomorphic
to K5, or has an internal 3-separation straddled bye.
These cases are considered one at a time. As a first step,
it is shown that one can recognize which case is appli-
cable inO(n) time. Clearly, recognizing ifG is isomor-
phic toK5 can be done in constant time. Also, it is well
known that planarity can be recognized inO(n) time;
see, for example, Hopcroft and Tarjan [10]. Determin-
ing whetherG has an internal 3-separation straddled by
e can be done inO(n) time using Algorithm Decomp,
sinceG has an internal 3-separation straddled bye if
and only if itse-decomposition has at least two mem-
bers. Finally, by Lemma 7, the only other possibility for
G is that it is crown-planar with respect toe. Moreover,
in this last case, it can further be assumed thatG does
not have an internal 3-separation straddled bye.

(IIIa) The Base Cases
This subcase considers that cases whenG is either

planar, crown-planar with respect toe, or isomorphic
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to K5. For each of these three cases, it is shown how
to solve the maximum-flow problem(G, e, u) in linear
time. For the planar case, this is done using the Hassin
[7] reduction to the shortest-path problem. For the latter
two cases, this is done by reducing them to the planar
case.

The Hassin reduction can be applied to either directed
or undirected graphs. For what follows, it is better to
use directed graphs. That is, the undirected maximum-
flow problem is first converted to an equivalent directed
maximum-flow problem, to which the Hassin reduction
is applied. The reason for doing this is to ensure that the
resulting solution(D, x) to the maximum-flow problem
(G, e, u) satisfies the following propertyP1. Direct ap-
plication of the Hassin reduction to(G, e, u) does not
ensure this.

PropertyP1: No arc ofD is directed intos or out of
t.

AssumingG is planar, consider the following directed
graphG∗. Each ofG edge incident tos is directed away
from s, each edge incident tot is directed towardst, and
each remaining edge is replaced by a pair of oppositely
directed arcs. The arc capacities forG∗ are inherited
from G; that is, for each arc ofG∗, define its capacity
to be equal to the corresponding edge ofG; in partic-
ular, the two arcs in an oppositely directed pair have
the same capacity. Letu∗ denote the resulting capac-
ity vector. Then, it is straightforward to see that solv-
ing the directed maximum-flow problem(G∗, s, t, u∗)
solves(G, e, u).

ByHassin [7],the maximum-flow problem(G∗, s,t,u∗)
can reduced to a shortest-path problem on the planar
dual ofG∗. Finding the planar dual can be done inO(n)
time; see, for example, Hopcroft and Tarjan [10] and
Mehlhorn and Mutzel [12]. Solving the shortest-path
problem on the planar dual requiresO(n) time using the
algorithm of Henzinger, Klein, Rao, and Subramanian
[8]. Converting the shortest-path solution into one for
maximum-flow problem is straightforward, and can be
done inO(n) time. Thus, solving the maximum-flow
problem(G, e, u) whenG is planar requiresO(n) time.

Now, consider the case whereG is isomorphic toK5

or crown-planar with respect toe. In the latter case, it is
assumed thatG does not have an internal 3-separation
straddled bye. Observe thate is in a triangle ofG.
Let f and g be the other two edges of the triangle,
and without loss of generality, assume thatuf ≤ ug.
Consider reducing the capacity of bothf andg by uf ,
and letu′ denote the resulting capacity vector. Observe

that everyst-cut of G contains exactly one off andg.
From the Max-Flow-Min-Cut Theorem [5], it follows
that the maximum-flow value for(G, e, u′) is equal to
that of (G, e, u) minusuf . Thus, a maximum flow for
(G, e, u) can be found by first solving the maximum-
flow problem(G, e, u′), and then augmenting the flow
on f and g by uf units. Sinceu′

f = 0, in solving
(G, e, u′), the edgef can be a priori deleted. By Lemma
8 (or by inspection, in the case ofK5), G\f is planar.
Therefore, both the crown-planar case and theK5 case
reduce to the planar case inO(n) time.

(IIIb) Maximum Flows and3-Sum Decompositions

The next step is to analyze the relationship between
an instance of the maximum-flow problem and a 3-
sum decomposition, defined relative to an internal 3-
separation straddled bye, in the underlying graph. The
step is conceptually similar to(IIa), although the de-
tails are more complicated. In particular, it is shown
that such an instance of the maximum-flow problem can
be reduced to solving maximum-flow problems on the
members of the associated 3-sum decomposition.

Let {E1, E2} be an internal 3-separation straddled by
e. Let {G1, G2} be the corresponding 3-sum decompo-
sition, and letT be the connecting triangle. Let{s, t, z}
denote the node set ofT . Two maximum-flow problems
are defined onG2. For both problems, initially define
the capacity of all virtual edges to be zero; all other
edges inherit their capacity fromG. Let f = sz and
g = tz denote the two edges ofT − {e}. For the first
maximum-flow problem onG2, denoted(G2, e, u

21),
re-define the capacity ofg to be∞, and letv21 denote re-
sulting maximum-flow value. For the second maximum-
flow problem onG2, denoted(G2, e, u

22), re-define the
capacity off to be∞, and letv22 denote the resulting
maximum-flow value. Now, consider(G1, e, u

1), where
u1 is defined as follows. All edges ofG1, except for
those inT , inherit their capacity fromG; edgese, f ,
andg have respective capacities of zero,v21, andv22.

Let (D1, x
1) be a maximum flow for(G1, e, u

1). The
goal is to show that this flow can be extended to a
maximum flow(D, x) for (G, e, u). It is assumed that
(D1, x1) satisfies PropertyP1. In addition, consider the
following property.

PropertyP2: The flow on the arc from{f, g} having
the smaller capacity with respect tou1 is equal to its
capacity, and the flow on the arc having the greater
capacity is at least that of the edge having the smaller
capacity.
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It is claimed that, without loss of generality, it can be
assumed that(D1, x1) satisfies PropertyP2. To see this,
let δ denote the smaller of the two capacities off andg,
and consider modifyingu1 by reducing the capacities of
f andg by δ. Letu′ denote the resulting capacity vector.
Observe that everyst-cut of G1 contains exactly one
of f andg. From the Max-Flow-Min-Cut Theorem [5],
it follows that the maximum-flow value for(G1, e, u

′)
is equal to that of(G1, e, u

1) minusδ. Now, consider
a maximum flow(D′, x′) for (G1, e, u

′). Augmenting
the flow onf and g be δ units produces a maximum
flow for (D1, e, u

1) satisfying PropertyP2 as claimed.
In extending the maximum flow(D1, x

1) for
(G1, e, u

1) to a maximum flow(D, x) for (G, e, u),
two cases are considered. For the first case, which as-
sumesx1

f ≥ x1
g, the full details are below. The second

case, which assumesx1
g ≥ x1

f , is symmetric with the
first and thus is left to the reader.

Assumingx1
f ≥ x1

g, defineγ := x1
f − x1

g. Con-
sider the instance of the maximum-flow problem ob-
tained from(G2, e, u

21) by re-defining the capacity on
the edgeg to beγ if g is a virtual edge, and to beug +γ

otherwise; denote this problem by(G2, e, u
∗), and let

(D2, x
2) be a maximum flow for(G2, e, u

∗). It is as-
sumed that(D2, x

2) satisfies PropertyP1.
Given (D1, x

1) and (D2, x
2), a flow (D, x) for

(G, e, u) is constructed as follows. Each edge ofG that
is not in T takes its orientation and flow from either
(D1, x

1) or (D2, x
2), as appropriate. The edges inT

are handled as follows. Edgee evidently is assigned
a flow of zero, and is oriented froms to t. If f is an
edge ofG (i.e., it is not a virtual edge ofT ), then it
is oriented froms to z, and assigned a flow equal to
thex2

f . Finally, if g is an edge ofG, then it is oriented
from z to t and assigned a flow equal tox2

g − γ. Note,
PropertyP1 is satisfied.

To show that(D, x) is a maximum flow for(G, e, u),
it is first shown that it is feasible. It is easily seen that
the flow satisfies the capacity constraints on the edges.
Also, for any node other thans, t, orz, it easily seen that
the net flow at the node is equal to zero. Consider node
z. The net flow atz is equal to zero in both(D1, x

1) and
(D2, x

2). In constructing(D, x), the flows onf andg

from (D1, x
1) are ignored, which, by the definition of

γ and PropertyP1, contributes−γ to the net flow atz
in (D, x). Also, in constructing(D, x), the flow ong

in (D2, x
2) is decreased byγ, which, by PropertyP1,

contributes+γ to the net flow atz in (D, x). Thus, the
net flow atz in (D, x) is zero. Finally, it needs to be
shown that the nonnegativity constraints are satisfied.

In particular, it needs to be shown that the flow ong

is nonnegative. This follows immediately from the next
claim.

Claim: In (D2, x
2), x2

g ≥ γ.
Proof of Claim: The claim is proved by showing that

either γ equals zero, or that the edgeg is in a mini-
mum cut of(D2, x

2) with respect to the capacity vec-
tor u∗, which implies (by a standard network-flow re-
sult – see Ahuja, Magnanti, and Orlin [1]) that the
flow on g is equal to its capacity, and therefore at least
γ. First, suppose thatv21 < v22. Then, PropertyP2

implies thatγ = 0. On the other hand, suppose that
v22 ≤ v21. By definition,γ = x1

f − x1
g, which implies

thatγ ≤ v21 − x1
g. By PropertyP2, the right-hand side

is equal tov21 − v22. That is,v22 + γ ≤ v21. Observe
v22+γ (respectively,v21) is the capacity of a minimum-
capacityst-cut of (G2, e, u

∗) that containsg (respec-
tively, f ). In other words, there exists a minimum cut
of (G2, e, u

∗) that containsg, which implies thatg is in
a minimum cut of(D2, x

2) as required.End of Claim

It has just been shown that(D, x) is a feasible flow
for (G, e, u). The next step is to show that it is a max-
imum flow. To this end, it is first shown that the value
of the flow (D, x) is equal to the value of the flow
(D1, x

1). From the definition of(D, x), this can be
done by showing that the value of the flow(D2, x

2)
is equal tox1

f . This, in turn, is done by showing that
the capacity of a minimum cut in(G2, e, u

∗) equals
x1

f . If a minimum cut of(G2, e, u
∗) containsf , then

the minimum-cut capacity equalsv21. If a minimum
cut of (G2, e, u

∗) containsg, then the minimum-cut ca-
pacity equalsv22 + γ. Thus, the minimum-cut capac-
ity in (G2, e, u

∗) equalsmin{v21, v22 + γ}. Now, if
v21 ≤ v22, then PropertyP2 implies that implies the
minimum-cut capacity in(G2, e, u

∗) equalsx1
f , as re-

quired. If, on the other hand,v22 ≤ v21, then Prop-
erty P2 implies v22 = x1

g, which, in turn, implies that
v22 + γ = x1

f . Therefore, the minimum-cut capacity in
(G2, e, u

∗) equalsmin{v21, x1
f}, which equalsx1

f , as
required.

The second, and final step, in showing that(D, x) is a
maximum flow for(G, e, u) is to show that the capacity
of a minimum cut in(G, e, u) is no more than that in
(G1, e, u

1). The result then follows from the Max-Flow-
Min-Cut Theorem [5]. LetX1 be a minimum cut of
(G1, e, u

1). Suppose thatX1 containsf ; an analogous
argument can be made ifX1 containsg. By definition,
there exists anst-cut, sayY1, of (G2, e, u

1) that contains
f and has capacityv21. It is now straightforward to see
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that the set consisting ofX1 ∪ Y1 minus any virtual
edges is anst-cut of G, the capacity of which is equal
to that ofX1.

(IIIc) The Reduction Procedure

The final step in the proof of the theorem is now
at hand. In particular, it needs to be shown that the
above relationship between maximum flows and 3-sum
decompositions can be turned into a computationally
efficient procedure for reducing the 3-connected case to
the planar case.

Similar to (IIb), this is done by first making a judi-
cious choice for the 3-sum decomposition, and then ap-
plying this choice recursively. In particular, by(IIIb),
Theorem 1, and recursive application of Lemma 2, the
maximum-flow problem onG reduces to solving a se-
quence of maximum-flow problems on the members of
thee-decomposition ofG, each of which is either pla-
nar, crown-planar with respect toe, or isomorphic to
K5. By Proposition 1, finding thee-decomposition can
be done inO(n) time. By(IIIa), all of these individual
maximum-flow problems can be solved in linear time.
By (IIIa) and Lemma 10, the total time spent solving
the maximum-flow problems isO(n). Thus, it follows
that the maximum-flow problem(G, e, u) can be solved
in O(n) time.⊔⊓

6. Directed Graphs

The main result of this paper, Theorem 3, can be
extended to directed graphs in a straightforward manner.
That is, the maximum-flow problem on a directed graph
D can be solved inO(n) time provided thatD is simple
(in the directed sense) and that the underlying graph of
D does not have aK3,3 minor containing the return
edge. The proof follows the same basic steps – one
decomposes the underlying graph using 2-sum and 3-
sum decompositions to reduce the original problem to
solving maximum-flow problems on directed planar and
crown-planar graphs, and directedK5’s. The details are
left to the reader.
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